Moditha24 commited on
Commit
a643cc9
·
verified ·
1 Parent(s): c74dac6

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +80 -12
app.py CHANGED
@@ -1,20 +1,88 @@
1
- from config import model
2
- from mmcv.utils import Config
3
- from mmdet.models import build_detector
4
  import torch
 
 
 
 
 
5
 
6
- def main():
7
- print(f"Model type: {model['type']}")
 
8
 
9
- detector = build_detector(model, train_cfg=model.get('train_cfg'), test_cfg=model.get('test_cfg'))
10
- detector.eval()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11
 
12
- print(detector)
 
 
 
13
 
14
- dummy_input = torch.randn(1, 3, 800, 1333)
15
  with torch.no_grad():
16
- output = detector.forward_dummy(dummy_input)
17
- print("Forward output:", output)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
18
 
19
  if __name__ == "__main__":
20
- main()
 
 
 
 
1
  import torch
2
+ import torchvision
3
+ from PIL import Image
4
+ import numpy as np
5
+ import matplotlib.pyplot as plt
6
+ import gradio as gr
7
 
8
+ # Load pretrained Mask R-CNN model
9
+ model = torchvision.models.detection.maskrcnn_resnet50_fpn(pretrained=True)
10
+ model.eval()
11
 
12
+ # COCO labels
13
+ COCO_INSTANCE_CATEGORY_NAMES = [
14
+ '__background__', 'person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus',
15
+ 'train', 'truck', 'boat', 'traffic light', 'fire hydrant', 'N/A', 'stop sign',
16
+ 'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow',
17
+ 'elephant', 'bear', 'zebra', 'giraffe', 'N/A', 'backpack', 'umbrella',
18
+ 'N/A', 'N/A', 'handbag', 'tie', 'suitcase', 'frisbee', 'skis', 'snowboard',
19
+ 'sports ball', 'kite', 'baseball bat', 'baseball glove', 'skateboard',
20
+ 'surfboard', 'tennis racket', 'bottle', 'N/A', 'wine glass', 'cup', 'fork',
21
+ 'knife', 'spoon', 'bowl', 'banana', 'apple', 'sandwich', 'orange', 'broccoli',
22
+ 'carrot', 'hot dog', 'pizza', 'donut', 'cake', 'chair', 'couch', 'potted plant',
23
+ 'bed', 'N/A', 'dining table', 'N/A', 'N/A', 'toilet', 'N/A', 'tv', 'laptop',
24
+ 'mouse', 'remote', 'keyboard', 'cell phone', 'microwave', 'oven', 'toaster',
25
+ 'sink', 'refrigerator', 'N/A', 'book', 'clock', 'vase', 'scissors', 'teddy bear',
26
+ 'hair drier', 'toothbrush'
27
+ ]
28
 
29
+ # Detection and segmentation function
30
+ def segment_objects(image, threshold=0.5):
31
+ transform = torchvision.transforms.ToTensor()
32
+ img_tensor = transform(image).unsqueeze(0)
33
 
 
34
  with torch.no_grad():
35
+ output = model(img_tensor)[0]
36
+
37
+ masks = output['masks'] # shape: [N, 1, H, W]
38
+ boxes = output['boxes']
39
+ labels = output['labels']
40
+ scores = output['scores']
41
+
42
+ image_np = np.array(image).copy()
43
+ fig, ax = plt.subplots(1, figsize=(10, 10))
44
+ ax.imshow(image_np)
45
+
46
+ for i in range(len(masks)):
47
+ if scores[i] >= threshold:
48
+ mask = masks[i, 0].cpu().numpy()
49
+ mask = mask > 0.5 # convert to binary mask
50
+
51
+ # Random color for each mask
52
+ color = np.random.rand(3)
53
+ colored_mask = np.zeros_like(image_np, dtype=np.uint8)
54
+ for c in range(3):
55
+ colored_mask[:, :, c] = mask * int(color[c] * 255)
56
+
57
+ # Blend the mask onto the image
58
+ image_np = np.where(mask[:, :, None], 0.5 * image_np + 0.5 * colored_mask, image_np).astype(np.uint8)
59
+
60
+ # Draw bounding box
61
+ x1, y1, x2, y2 = boxes[i].cpu().numpy()
62
+ ax.add_patch(plt.Rectangle((x1, y1), x2 - x1, y2 - y1,
63
+ fill=False, color=color, linewidth=2))
64
+ label = COCO_INSTANCE_CATEGORY_NAMES[labels[i].item()]
65
+ ax.text(x1, y1, f"{label}: {scores[i]:.2f}",
66
+ bbox=dict(facecolor='yellow', alpha=0.5), fontsize=10)
67
+
68
+ ax.imshow(image_np)
69
+ ax.axis('off')
70
+ output_path = "output_maskrcnn_with_masks.png"
71
+ plt.savefig(output_path, bbox_inches='tight', pad_inches=0)
72
+ plt.close()
73
+ return output_path
74
+
75
+ # Gradio interface
76
+ interface = gr.Interface(
77
+ fn=segment_objects,
78
+ inputs=[
79
+ gr.Image(type="pil", label="Upload Image"),
80
+ gr.Slider(0.0, 1.0, value=0.5, step=0.05, label="Confidence Threshold")
81
+ ],
82
+ outputs=gr.Image(type="filepath", label="Segmented Output"),
83
+ title="Mask R-CNN Instance Segmentation",
84
+ description="Upload an image to detect and segment objects using a pretrained Mask R-CNN model (TorchVision)."
85
+ )
86
 
87
  if __name__ == "__main__":
88
+ interface.launch(debug=True)