Update config.py
Browse files
config.py
CHANGED
@@ -1,32 +1,248 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
model = dict(
|
2 |
+
type='MaskRCNN',
|
3 |
+
backbone=dict(
|
4 |
+
type='ResNeXt',
|
5 |
+
depth=101,
|
6 |
+
num_stages=4,
|
7 |
+
out_indices=(0, 1, 2, 3),
|
8 |
+
frozen_stages=1,
|
9 |
+
norm_cfg=dict(type='BN', requires_grad=True),
|
10 |
+
norm_eval=True,
|
11 |
+
style='pytorch',
|
12 |
+
init_cfg=dict(
|
13 |
+
type='Pretrained', checkpoint='open-mmlab://resnext101_64x4d'),
|
14 |
+
groups=64,
|
15 |
+
base_width=4),
|
16 |
+
neck=dict(
|
17 |
+
type='FPN',
|
18 |
+
in_channels=[256, 512, 1024, 2048],
|
19 |
+
out_channels=256,
|
20 |
+
num_outs=5),
|
21 |
+
rpn_head=dict(
|
22 |
+
type='RPNHead',
|
23 |
+
in_channels=256,
|
24 |
+
feat_channels=256,
|
25 |
+
anchor_generator=dict(
|
26 |
+
type='AnchorGenerator',
|
27 |
+
scales=[8],
|
28 |
+
ratios=[0.5, 1.0, 2.0],
|
29 |
+
strides=[4, 8, 16, 32, 64]),
|
30 |
+
bbox_coder=dict(
|
31 |
+
type='DeltaXYWHBBoxCoder',
|
32 |
+
target_means=[0.0, 0.0, 0.0, 0.0],
|
33 |
+
target_stds=[1.0, 1.0, 1.0, 1.0]),
|
34 |
+
loss_cls=dict(
|
35 |
+
type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0),
|
36 |
+
loss_bbox=dict(type='L1Loss', loss_weight=1.0)),
|
37 |
+
roi_head=dict(
|
38 |
+
type='StandardRoIHead',
|
39 |
+
bbox_roi_extractor=dict(
|
40 |
+
type='SingleRoIExtractor',
|
41 |
+
roi_layer=dict(type='RoIAlign', output_size=7, sampling_ratio=0),
|
42 |
+
out_channels=256,
|
43 |
+
featmap_strides=[4, 8, 16, 32]),
|
44 |
+
bbox_head=dict(
|
45 |
+
type='Shared2FCBBoxHead',
|
46 |
+
in_channels=256,
|
47 |
+
fc_out_channels=1024,
|
48 |
+
roi_feat_size=7,
|
49 |
+
num_classes=80,
|
50 |
+
bbox_coder=dict(
|
51 |
+
type='DeltaXYWHBBoxCoder',
|
52 |
+
target_means=[0.0, 0.0, 0.0, 0.0],
|
53 |
+
target_stds=[0.1, 0.1, 0.2, 0.2]),
|
54 |
+
reg_class_agnostic=False,
|
55 |
+
loss_cls=dict(
|
56 |
+
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0),
|
57 |
+
loss_bbox=dict(type='L1Loss', loss_weight=1.0)),
|
58 |
+
mask_roi_extractor=dict(
|
59 |
+
type='SingleRoIExtractor',
|
60 |
+
roi_layer=dict(type='RoIAlign', output_size=14, sampling_ratio=0),
|
61 |
+
out_channels=256,
|
62 |
+
featmap_strides=[4, 8, 16, 32]),
|
63 |
+
mask_head=dict(
|
64 |
+
type='FCNMaskHead',
|
65 |
+
num_convs=4,
|
66 |
+
in_channels=256,
|
67 |
+
conv_out_channels=256,
|
68 |
+
num_classes=80,
|
69 |
+
loss_mask=dict(
|
70 |
+
type='CrossEntropyLoss', use_mask=True, loss_weight=1.0))),
|
71 |
+
train_cfg=dict(
|
72 |
+
rpn=dict(
|
73 |
+
assigner=dict(
|
74 |
+
type='MaxIoUAssigner',
|
75 |
+
pos_iou_thr=0.7,
|
76 |
+
neg_iou_thr=0.3,
|
77 |
+
min_pos_iou=0.3,
|
78 |
+
match_low_quality=True,
|
79 |
+
ignore_iof_thr=-1),
|
80 |
+
sampler=dict(
|
81 |
+
type='RandomSampler',
|
82 |
+
num=256,
|
83 |
+
pos_fraction=0.5,
|
84 |
+
neg_pos_ub=-1,
|
85 |
+
add_gt_as_proposals=False),
|
86 |
+
allowed_border=-1,
|
87 |
+
pos_weight=-1,
|
88 |
+
debug=False),
|
89 |
+
rpn_proposal=dict(
|
90 |
+
nms_pre=2000,
|
91 |
+
max_per_img=1000,
|
92 |
+
nms=dict(type='nms', iou_threshold=0.7),
|
93 |
+
min_bbox_size=0),
|
94 |
+
rcnn=dict(
|
95 |
+
assigner=dict(
|
96 |
+
type='MaxIoUAssigner',
|
97 |
+
pos_iou_thr=0.5,
|
98 |
+
neg_iou_thr=0.5,
|
99 |
+
min_pos_iou=0.5,
|
100 |
+
match_low_quality=True,
|
101 |
+
ignore_iof_thr=-1),
|
102 |
+
sampler=dict(
|
103 |
+
type='RandomSampler',
|
104 |
+
num=512,
|
105 |
+
pos_fraction=0.25,
|
106 |
+
neg_pos_ub=-1,
|
107 |
+
add_gt_as_proposals=True),
|
108 |
+
mask_size=28,
|
109 |
+
pos_weight=-1,
|
110 |
+
debug=False)),
|
111 |
+
test_cfg=dict(
|
112 |
+
rpn=dict(
|
113 |
+
nms_pre=1000,
|
114 |
+
max_per_img=1000,
|
115 |
+
nms=dict(type='nms', iou_threshold=0.7),
|
116 |
+
min_bbox_size=0),
|
117 |
+
rcnn=dict(
|
118 |
+
score_thr=0.05,
|
119 |
+
nms=dict(type='nms', iou_threshold=0.5),
|
120 |
+
max_per_img=100,
|
121 |
+
mask_thr_binary=0.5)))
|
122 |
+
dataset_type = 'CocoDataset'
|
123 |
+
data_root = 'data/coco/'
|
124 |
+
img_norm_cfg = dict(
|
125 |
+
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
|
126 |
+
train_pipeline = [
|
127 |
+
dict(type='LoadImageFromFile'),
|
128 |
+
dict(type='LoadAnnotations', with_bbox=True, with_mask=True),
|
129 |
+
dict(type='Resize', img_scale=(1333, 800), keep_ratio=True),
|
130 |
+
dict(type='RandomFlip', flip_ratio=0.5),
|
131 |
+
dict(
|
132 |
+
type='Normalize',
|
133 |
+
mean=[123.675, 116.28, 103.53],
|
134 |
+
std=[58.395, 57.12, 57.375],
|
135 |
+
to_rgb=True),
|
136 |
+
dict(type='Pad', size_divisor=32),
|
137 |
+
dict(type='DefaultFormatBundle'),
|
138 |
+
dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels', 'gt_masks'])
|
139 |
+
]
|
140 |
+
test_pipeline = [
|
141 |
+
dict(type='LoadImageFromFile'),
|
142 |
+
dict(
|
143 |
+
type='MultiScaleFlipAug',
|
144 |
+
img_scale=(1333, 800),
|
145 |
+
flip=False,
|
146 |
+
transforms=[
|
147 |
+
dict(type='Resize', keep_ratio=True),
|
148 |
+
dict(type='RandomFlip'),
|
149 |
+
dict(
|
150 |
+
type='Normalize',
|
151 |
+
mean=[123.675, 116.28, 103.53],
|
152 |
+
std=[58.395, 57.12, 57.375],
|
153 |
+
to_rgb=True),
|
154 |
+
dict(type='Pad', size_divisor=32),
|
155 |
+
dict(type='ImageToTensor', keys=['img']),
|
156 |
+
dict(type='Collect', keys=['img'])
|
157 |
+
])
|
158 |
+
]
|
159 |
+
data = dict(
|
160 |
+
samples_per_gpu=2,
|
161 |
+
workers_per_gpu=2,
|
162 |
+
train=dict(
|
163 |
+
type='CocoDataset',
|
164 |
+
ann_file='data/coco/annotations/instances_train2017.json',
|
165 |
+
img_prefix='data/coco/train2017/',
|
166 |
+
pipeline=[
|
167 |
+
dict(type='LoadImageFromFile'),
|
168 |
+
dict(type='LoadAnnotations', with_bbox=True, with_mask=True),
|
169 |
+
dict(type='Resize', img_scale=(1333, 800), keep_ratio=True),
|
170 |
+
dict(type='RandomFlip', flip_ratio=0.5),
|
171 |
+
dict(
|
172 |
+
type='Normalize',
|
173 |
+
mean=[123.675, 116.28, 103.53],
|
174 |
+
std=[58.395, 57.12, 57.375],
|
175 |
+
to_rgb=True),
|
176 |
+
dict(type='Pad', size_divisor=32),
|
177 |
+
dict(type='DefaultFormatBundle'),
|
178 |
+
dict(
|
179 |
+
type='Collect',
|
180 |
+
keys=['img', 'gt_bboxes', 'gt_labels', 'gt_masks'])
|
181 |
+
]),
|
182 |
+
val=dict(
|
183 |
+
type='CocoDataset',
|
184 |
+
ann_file='data/coco/annotations/instances_val2017.json',
|
185 |
+
img_prefix='data/coco/val2017/',
|
186 |
+
pipeline=[
|
187 |
+
dict(type='LoadImageFromFile'),
|
188 |
+
dict(
|
189 |
+
type='MultiScaleFlipAug',
|
190 |
+
img_scale=(1333, 800),
|
191 |
+
flip=False,
|
192 |
+
transforms=[
|
193 |
+
dict(type='Resize', keep_ratio=True),
|
194 |
+
dict(type='RandomFlip'),
|
195 |
+
dict(
|
196 |
+
type='Normalize',
|
197 |
+
mean=[123.675, 116.28, 103.53],
|
198 |
+
std=[58.395, 57.12, 57.375],
|
199 |
+
to_rgb=True),
|
200 |
+
dict(type='Pad', size_divisor=32),
|
201 |
+
dict(type='ImageToTensor', keys=['img']),
|
202 |
+
dict(type='Collect', keys=['img'])
|
203 |
+
])
|
204 |
+
]),
|
205 |
+
test=dict(
|
206 |
+
type='CocoDataset',
|
207 |
+
ann_file='data/coco/annotations/instances_val2017.json',
|
208 |
+
img_prefix='data/coco/val2017/',
|
209 |
+
pipeline=[
|
210 |
+
dict(type='LoadImageFromFile'),
|
211 |
+
dict(
|
212 |
+
type='MultiScaleFlipAug',
|
213 |
+
img_scale=(1333, 800),
|
214 |
+
flip=False,
|
215 |
+
transforms=[
|
216 |
+
dict(type='Resize', keep_ratio=True),
|
217 |
+
dict(type='RandomFlip'),
|
218 |
+
dict(
|
219 |
+
type='Normalize',
|
220 |
+
mean=[123.675, 116.28, 103.53],
|
221 |
+
std=[58.395, 57.12, 57.375],
|
222 |
+
to_rgb=True),
|
223 |
+
dict(type='Pad', size_divisor=32),
|
224 |
+
dict(type='ImageToTensor', keys=['img']),
|
225 |
+
dict(type='Collect', keys=['img'])
|
226 |
+
])
|
227 |
+
]))
|
228 |
+
evaluation = dict(metric=['bbox', 'segm'])
|
229 |
+
optimizer = dict(type='SGD', lr=0.02, momentum=0.9, weight_decay=0.0001)
|
230 |
+
optimizer_config = dict(grad_clip=None)
|
231 |
+
lr_config = dict(
|
232 |
+
policy='step',
|
233 |
+
warmup='linear',
|
234 |
+
warmup_iters=500,
|
235 |
+
warmup_ratio=0.001,
|
236 |
+
step=[16, 22])
|
237 |
+
runner = dict(type='EpochBasedRunner', max_epochs=24)
|
238 |
+
checkpoint_config = dict(interval=1)
|
239 |
+
log_config = dict(interval=50, hooks=[dict(type='TextLoggerHook')])
|
240 |
+
custom_hooks = [dict(type='NumClassCheckHook')]
|
241 |
+
dist_params = dict(backend='nccl')
|
242 |
+
log_level = 'INFO'
|
243 |
+
load_from = None
|
244 |
+
resume_from = None
|
245 |
+
workflow = [('train', 1)]
|
246 |
+
opencv_num_threads = 0
|
247 |
+
mp_start_method = 'fork'
|
248 |
+
auto_scale_lr = dict(enable=False, base_batch_size=16)
|