#V01 import gradio as gr from transformers import AutoTokenizer, AutoModelForCausalLM import torch # Liste des modèles disponibles model_list = [ "fbaldassarri/tiiuae_Falcon3-1B-Instruct-autogptq-int8-gs128-asym", "MisterAI/jpacifico_Chocolatine-3B-Instruct-DPO-v1.2", # Ajoutez d'autres modèles ici ] def load_model(model_name): """Charge le modèle et le tokenizer""" if model_name is not None: tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True) model = AutoModelForCausalLM.from_pretrained(model_name, trust_remote_code=True) return model, tokenizer else: return None, None def generate_text(model, tokenizer, input_text, max_length, temperature): """Génère du texte en utilisant le modèle""" inputs = tokenizer(input_text, return_tensors="pt") output = model.generate(**inputs, max_length=max_length, temperature=temperature) return tokenizer.decode(output[0], skip_special_tokens=True) def main(model_name, input_text, max_length, temperature): """Fonction principale pour générer le texte""" if model_name is not None: model, tokenizer = load_model(model_name) generated_text = generate_text(model, tokenizer, input_text, max_length, temperature) return generated_text else: return "Veuillez sélectionner un modèle" demo = gr.Blocks() with demo: gr.Markdown("# Modèle de Langage") with gr.Row(): model_select = gr.Dropdown(model_list, label="Sélectionner un modèle") with gr.Row(): load_button = gr.Button("Charger le modèle") with gr.Row(): input_text = gr.Textbox(label="Texte d'entrée") with gr.Row(): max_length_slider = gr.Slider(50, 500, label="Longueur maximale", value=200) temperature_slider = gr.Slider(0.1, 1.0, label="Température", value=0.7) with gr.Row(): submit_button = gr.Button("Soumettre") output_text = gr.Textbox(label="Texte généré") history = gr.JSON(label="Historique") load_button.click( load_model, inputs=model_select, outputs=None, queue=False ) submit_button.click( main, inputs=[model_select, input_text, max_length_slider, temperature_slider], outputs=output_text, queue=False ) if __name__ == "__main__": demo.launch()