import marimo
__generated_with = "0.11.16"
app = marimo.App(width="medium")
@app.cell
def _():
import marimo as mo
import os
return mo, os
@app.cell
def _():
def get_markdown_content(file_path):
with open(file_path, 'r', encoding='utf-8') as file:
content = file.read()
return content
return (get_markdown_content,)
@app.cell
def _(get_markdown_content, mo):
intro_text = get_markdown_content('intro_markdown/intro.md')
intro_marimo = get_markdown_content('intro_markdown/intro_marimo.md')
intro_notebook = get_markdown_content('intro_markdown/intro_notebook.md')
intro_comparison = get_markdown_content('intro_markdown/intro_comparison.md')
intro = mo.carousel([
mo.md(f"{intro_text}"),
mo.md(f"{intro_marimo}"),
mo.md(f"{intro_notebook}"),
mo.md(f"{intro_comparison}"),
])
mo.accordion({"## Notebook Introduction":intro})
return intro, intro_comparison, intro_marimo, intro_notebook, intro_text
@app.cell
def _(os):
### Imports
from typing import (
Any, Dict, List, Optional, Pattern, Set, Union, Tuple
)
from pathlib import Path
from urllib.request import urlopen
# from rich.markdown import Markdown as Markd
from rich.text import Text
from rich import print
from tqdm import tqdm
from enum import Enum
import pandas as pd
import tempfile
import requests
import getpass
import urllib3
import base64
import time
import json
import uuid
import ssl
import ast
import re
pd.set_option('display.max_columns', None)
pd.set_option('display.max_rows', None)
pd.set_option('display.max_colwidth', None)
pd.set_option('display.width', None)
# Set explicit temporary directory
os.environ['TMPDIR'] = '/tmp'
# Make sure Python's tempfile module also uses this directory
tempfile.tempdir = '/tmp'
return (
Any,
Dict,
Enum,
List,
Optional,
Path,
Pattern,
Set,
Text,
Tuple,
Union,
ast,
base64,
getpass,
json,
pd,
print,
re,
requests,
ssl,
tempfile,
time,
tqdm,
urllib3,
urlopen,
uuid,
)
@app.cell
def _(mo):
### Credentials for the watsonx.ai SDK client
# Endpoints
wx_platform_url = "https://api.dataplatform.cloud.ibm.com"
regions = {
"US": "https://us-south.ml.cloud.ibm.com",
"EU": "https://eu-de.ml.cloud.ibm.com",
"GB": "https://eu-gb.ml.cloud.ibm.com",
"JP": "https://jp-tok.ml.cloud.ibm.com",
"AU": "https://au-syd.ml.cloud.ibm.com",
"CA": "https://ca-tor.ml.cloud.ibm.com"
}
# Create a form with multiple elements
client_instantiation_form = (
mo.md('''
###**watsonx.ai credentials:**
{wx_region}
{wx_api_key}
{space_id}
''').style(max_height="300px", overflow="auto", border_color="blue")
.batch(
wx_region = mo.ui.dropdown(regions, label="Select your watsonx.ai region:", value="US", searchable=True),
wx_api_key = mo.ui.text(placeholder="Add your IBM Cloud api-key...", label="IBM Cloud Api-key:", kind="password"),
# project_id = mo.ui.text(placeholder="Add your watsonx.ai project_id...", label="Project_ID:", kind="text"),
space_id = mo.ui.text(placeholder="Add your watsonx.ai space_id...", label="Space_ID:", kind="text")
,)
.form(show_clear_button=True, bordered=False)
)
# client_instantiation_form
return client_instantiation_form, regions, wx_platform_url
@app.cell
def _(client_instantiation_form, mo):
from ibm_watsonx_ai import APIClient, Credentials
def setup_task_credentials(deployment_client):
# Get existing task credentials
existing_credentials = deployment_client.task_credentials.get_details()
# Delete existing credentials if any
if "resources" in existing_credentials and existing_credentials["resources"]:
for cred in existing_credentials["resources"]:
cred_id = deployment_client.task_credentials.get_id(cred)
deployment_client.task_credentials.delete(cred_id)
# Store new credentials
return deployment_client.task_credentials.store()
if client_instantiation_form.value:
### Instantiate the watsonx.ai client
wx_credentials = Credentials(
url=client_instantiation_form.value["wx_region"],
api_key=client_instantiation_form.value["wx_api_key"]
)
# project_client = APIClient(credentials=wx_credentials, project_id=client_instantiation_form.value["project_id"])
deployment_client = APIClient(credentials=wx_credentials, space_id=client_instantiation_form.value["space_id"])
task_credentials_details = setup_task_credentials(deployment_client)
else:
# project_client = None
deployment_client = None
task_credentials_details = None
template_variant = mo.ui.dropdown(["Base","Stream Files to IBM COS [Example]"], label="Code Template:", value="Base")
if deployment_client is not None:
client_callout_kind = "success"
else:
client_callout_kind = "neutral"
client_callout = mo.callout(template_variant, kind=client_callout_kind)
# client_callout
return (
APIClient,
Credentials,
client_callout,
client_callout_kind,
deployment_client,
setup_task_credentials,
task_credentials_details,
template_variant,
wx_credentials,
)
@app.cell
def _(
client_callout,
client_instantiation_form,
deploy_fnc,
deployment_definition,
fm,
function_editor,
hw_selection_table,
mo,
purge_tabs,
sc_m,
schema_editors,
selection_table,
upload_func,
):
s1 = mo.md(f'''
###**Instantiate your watsonx.ai client:**
1. Select a region from the dropdown menu
2. Provide an IBM Cloud Apikey and watsonx.ai deployment space id
3. Once you submit, the area with the code template will turn green if successful
4. Select a base (provide baseline format) or example code function template
---
{client_instantiation_form}
---
{client_callout}
''')
sc_tabs = mo.ui.tabs(
{
"Schema Option Selection": sc_m,
"Schema Definition": mo.md(f"""
####**Edit the schema definitions you selected in the previous tab.**
{schema_editors}"""),
}
)
s2 = mo.md(f'''###**Create your function from the template:**
1. Use the code editor window to create a function to deploy
The function must:
--- Include a payload and score element
--- Have the same function name in both the score = () segment and the Function Name input field below
--- Additional details can be found here -> [watsonx.ai - Writing deployable Python functions
](https://dataplatform.cloud.ibm.com/docs/content/wsj/analyze-data/ml-deploy-py-function-write.html?utm_medium=Exinfluencer&utm_source=ibm_developer&utm_content=in_content_link&utm_term=10006555&utm_id=blogs_awb-tekton-optimizations-for-kubeflow-pipelines-2-0&context=wx&audience=wdp)
3. Click submit, then proceed to select whether you wish to add:
--- An input schema (describing the format of the variables the function takes) **[Optional]**
--- An output schema (describing the format of the output results the function returns) **[Optional]**
--- An sample input example (showing an example of a mapping of the input and output schema to actual values.) **[Optional]**
4. Fill in the function name field **(must be exactly the same as in the function editor)**
5. Add a description and metadata tags **[Optional]**
---
{function_editor}
---
{sc_tabs}
---
{fm}
''')
s3 = mo.md(f'''
###**Review and Upload your function**
1. Review the function metadata specs JSON
2. Select a software specification if necessary (default for python functions is pre-selected), this is the runtime environment of python that your function will run in. Environments on watsonx.ai come pre-packaged with many different libraries, if necessary install new ones by adding them into the function as a `subprocess.check_output('pip install ', shell=True)` command.
3. Once your are satisfied, click the upload function button and wait for the response.
> If you see no table of software specs, you haven't activated your watsonx.ai client.
---
{selection_table}
---
{upload_func}
''')
s4 = mo.md(f'''
###**Deploy your function:**
1. Select a hardware specification (vCPUs/GB) that you want your function deployed on
--- XXS and XS cost the same (0.5 CUH per hour, so XS is the better option
--- Select larger instances for more resource intensive tasks or runnable jobs
2. Select the type of deployment:
--- Function (Online) for always-on endpoints - Always available and low latency, but consume resources continuously for every hour they are deployed.
--- Batch (Batch) for runnable jobs - Only consume resources during job runs, but aren't as flexible to deploy.
3. If you've selected Function, pick a completely unique (globally, not just your account) deployment serving name that will be in the endpoint url.
4. Once your are satisfied, click the deploy function button and wait for the response.
---
{hw_selection_table}
---
{deployment_definition}
---
{deploy_fnc}
''')
s5 = mo.md(f'''
###**Helper Purge Functions:**
These functions help you retrieve and mass delete ***(WARNING: purges all at once)*** deployments, data assets or repository assets (functions, models, etc.) that you have in the deployment space. This is meant to support fast cleanup.
Select the tab based on what you want to delete, then click each of the buttons one by one after the previous gives a response.
---
{purge_tabs}
''')
sections = mo.accordion(
{
"Section 1: **watsonx.ai Credentials**": s1,
"Section 2: **Function Creation**": s2,
"Section 3: **Function Upload**": s3,
"Section 4: **Function Deployment**": s4,
"Section 5: **Helper Functions**": s5,
},
multiple=True
)
sections
return s1, s2, s3, s4, s5, sc_tabs, sections
@app.cell
def _(mo, template_variant):
# Template for WatsonX.ai deployable function
if template_variant.value == "Stream Files to IBM COS [Example]":
with open("stream_files_to_cos.py", "r") as file:
template = file.read()
else:
template = '''def your_function_name():
import subprocess
subprocess.check_output('pip install gensim', shell=True)
import gensim
def score(input_data):
message_from_input_payload = payload.get("input_data")[0].get("values")[0][0]
response_message = "Received message - {0}".format(message_from_input_payload)
# Score using the pre-defined model
score_response = {
'predictions': [{'fields': ['Response_message_field', 'installed_lib_version'],
'values': [[response_message, gensim.__version__]]
}]
}
return score_response
return score
score = your_function_name()
'''
function_editor = (
mo.md('''
#### **Create your function by editing the template:**
{editor}
''')
.batch(
editor = mo.ui.code_editor(value=template, language="python", min_height=50)
)
.form(show_clear_button=True, bordered=False)
)
# function_editor
return file, function_editor, template
@app.cell
def _(function_editor, mo, os):
if function_editor.value:
# Get the edited code from the function editor
code = function_editor.value['editor']
# Create a namespace to execute the code in
namespace = {}
# Execute the code
exec(code, namespace)
# Find the first function defined in the namespace
function_name = None
for name, obj in namespace.items():
if callable(obj) and name != "__builtins__":
function_name = name
break
if function_name:
# Instantiate the deployable function
deployable_function = namespace[function_name]
# Now deployable_function contains the score function
mo.md(f"Created deployable function from '{function_name}'")
# Create the directory if it doesn't exist
save_dir = "/tmp/notebook_functions"
os.makedirs(save_dir, exist_ok=True)
# Save the function code to a file
file_path = os.path.join(save_dir, f"{function_name}.py")
with open(file_path, "w") as f:
f.write(code)
else:
mo.md("No function found in the editor code")
return (
code,
deployable_function,
f,
file_path,
function_name,
name,
namespace,
obj,
save_dir,
)
@app.cell
def _(deployment_client, mo, pd):
if deployment_client:
supported_specs = deployment_client.software_specifications.list()[
deployment_client.software_specifications.list()['STATE'] == 'supported'
]
# Reset the index to start from 0
supported_specs = supported_specs.reset_index(drop=True)
# Create a mapping dictionary for framework names based on software specifications
framework_mapping = {
"tensorflow_rt24.1-py3.11": "TensorFlow",
"pytorch-onnx_rt24.1-py3.11": "PyTorch",
"onnxruntime_opset_19": "ONNX or ONNXRuntime",
"runtime-24.1-py3.11": "AI Services/Python Functions/Python Scripts",
"autoai-ts_rt24.1-py3.11": "AutoAI",
"autoai-kb_rt24.1-py3.11": "AutoAI",
"runtime-24.1-py3.11-cuda": "CUDA-enabled (GPU) Python Runtime",
"runtime-24.1-r4.3": "R Runtime 4.3",
"spark-mllib_3.4": "Apache Spark 3.4",
"autoai-rag_rt24.1-py3.11": "AutoAI RAG"
}
# Define the preferred order for items to appear at the top
preferred_order = [
"runtime-24.1-py3.11",
"runtime-24.1-py3.11-cuda",
"runtime-24.1-r4.3",
"ai-service-v5-software-specification",
"autoai-rag_rt24.1-py3.11",
"autoai-ts_rt24.1-py3.11",
"autoai-kb_rt24.1-py3.11",
"tensorflow_rt24.1-py3.11",
"pytorch-onnx_rt24.1-py3.11",
"onnxruntime_opset_19",
"spark-mllib_3.4",
]
# Create a new column for sorting
supported_specs['SORT_ORDER'] = supported_specs['NAME'].apply(
lambda x: preferred_order.index(x) if x in preferred_order else len(preferred_order)
)
# Sort the DataFrame by the new column
supported_specs = supported_specs.sort_values('SORT_ORDER').reset_index(drop=True)
# Drop the sorting column as it's no longer needed
supported_specs = supported_specs.drop(columns=['SORT_ORDER'])
# Drop the REPLACEMENT column if it exists and add NOTES column
if 'REPLACEMENT' in supported_specs.columns:
supported_specs = supported_specs.drop(columns=['REPLACEMENT'])
# Add NOTES column with framework information
supported_specs['NOTES'] = supported_specs['NAME'].map(framework_mapping).fillna("Other")
# Create a table with single-row selection
selection_table = mo.ui.table(
supported_specs,
selection="single", # Only allow selecting one row
label="#### **Select a supported software_spec runtime for your function asset** (For Python Functions select - *'runtime-24.1-py3.11'* ):",
initial_selection=[0], # Now selecting the first row, which should be runtime-24.1-py3.11
page_size=6
)
else:
sel_df = pd.DataFrame(
data=[["ID", "Activate deployment_client."]],
columns=["ID", "VALUE"]
)
selection_table = mo.ui.table(
sel_df,
selection="single", # Only allow selecting one row
label="You haven't activated the Deployment_Client",
initial_selection=[0]
)
# # Display the table
# mo.md(f"""---
#
#
# {selection_table}
#
#
# ---
#
#
# """)
return (
framework_mapping,
preferred_order,
sel_df,
selection_table,
supported_specs,
)
@app.cell
def _(mo):
input_schema_checkbox = mo.ui.checkbox(label="Add input schema (optional)")
output_schema_checkbox = mo.ui.checkbox(label="Add output schema (optional)")
sample_input_checkbox = mo.ui.checkbox(label="Add sample input example (optional)")
return input_schema_checkbox, output_schema_checkbox, sample_input_checkbox
@app.cell
def _(
input_schema_checkbox,
mo,
output_schema_checkbox,
sample_input_checkbox,
selection_table,
template_variant,
):
if selection_table.value['ID'].iloc[0]:
# Create the input fields
if template_variant.value == "Stream Files to IBM COS [Example]":
fnc_nm = "stream_file_to_cos"
else:
fnc_nm = "your_function_name"
uploaded_function_name = mo.ui.text(placeholder="", label="Function Name:", kind="text", value=f"{fnc_nm}", full_width=False)
tags_editor = mo.ui.array(
[mo.ui.text(placeholder="Metadata Tags..."), mo.ui.text(), mo.ui.text()],
label="Optional Metadata Tags"
)
software_spec = selection_table.value['ID'].iloc[0]
description_input = mo.ui.text_area(
placeholder="Write a description for your function...)",
label="Description",
max_length=256,
rows=5,
full_width=True
)
func_metadata=mo.hstack([
description_input,
mo.hstack([
uploaded_function_name,
tags_editor,
], justify="start", gap=1, align="start", wrap=True)
],
widths=[0.6,0.4],
gap=2.75
)
schema_metadata=mo.hstack([
input_schema_checkbox,
output_schema_checkbox,
sample_input_checkbox
],
justify="center", gap=1, align="center", wrap=True
)
# Display the metadata inputs
# mo.vstack([
# func_metadata,
# mo.md("**Make sure to click the checkboxes before filling in descriptions and tags or they will reset.**"),
# schema_metadata
# ],
# align="center",
# gap=2
# )
fm = mo.vstack([
func_metadata,
],
align="center",
gap=2
)
sc_m = mo.vstack([
schema_metadata,
mo.md("**Make sure to select the checkbox options before filling in descriptions and tags or they will reset.**")
],
align="center",
gap=2
)
return (
description_input,
fm,
fnc_nm,
func_metadata,
sc_m,
schema_metadata,
software_spec,
tags_editor,
uploaded_function_name,
)
@app.cell
def _(json, mo, template_variant):
if template_variant.value == "Stream Files to IBM COS [Example]":
from cos_stream_schema_examples import input_schema, output_schema, sample_input
else:
input_schema = [
{
'id': '1',
'type': 'struct',
'fields': [
{
'name': '',
'type': 'string',
'nullable': False,
'metadata': {}
},
{
'name': '',
'type': 'string',
'nullable': False,
'metadata': {}
}
]
}
]
output_schema = [
{
'id': '1',
'type': 'struct',
'fields': [
{
'name': '