|
import marimo |
|
|
|
__generated_with = "0.11.17" |
|
app = marimo.App(width="medium") |
|
|
|
|
|
@app.cell |
|
def _(): |
|
import marimo as mo |
|
import os |
|
return mo, os |
|
|
|
|
|
@app.cell |
|
def _(os): |
|
|
|
from typing import ( |
|
Any, Dict, List, Optional, Pattern, Set, Union, Tuple |
|
) |
|
from pathlib import Path |
|
from urllib.request import urlopen |
|
|
|
from rich.console import Console |
|
from rich.theme import Theme |
|
from rich.text import Text |
|
from rich import print |
|
from tqdm import tqdm |
|
from enum import Enum |
|
import pandas as pd |
|
import tempfile |
|
import requests |
|
import getpass |
|
import urllib3 |
|
import base64 |
|
import time |
|
import json |
|
import uuid |
|
import ssl |
|
import ast |
|
import re |
|
|
|
pd.set_option('display.max_columns', None) |
|
pd.set_option('display.max_rows', None) |
|
pd.set_option('display.max_colwidth', None) |
|
pd.set_option('display.width', None) |
|
|
|
custom_theme = Theme({ |
|
"info": "blue_violet", "warning": "yellow", "danger": "red", "python": "blue_violet", "string": "cyan", "number": "magenta", "keyword": "bright_blue", "comment": "dim blue_violet", "json":"blue_violet" |
|
}) |
|
|
|
|
|
os.environ['TMPDIR'] = '/tmp' |
|
|
|
|
|
tempfile.tempdir = '/tmp' |
|
|
|
|
|
console = Console(width=250, color_system="auto", force_jupyter=True) |
|
return ( |
|
Any, |
|
Console, |
|
Dict, |
|
Enum, |
|
List, |
|
Optional, |
|
Path, |
|
Pattern, |
|
Set, |
|
Text, |
|
Theme, |
|
Tuple, |
|
Union, |
|
ast, |
|
base64, |
|
console, |
|
custom_theme, |
|
getpass, |
|
json, |
|
pd, |
|
print, |
|
re, |
|
requests, |
|
ssl, |
|
tempfile, |
|
time, |
|
tqdm, |
|
urllib3, |
|
urlopen, |
|
uuid, |
|
) |
|
|
|
|
|
@app.cell |
|
def _(mo): |
|
|
|
|
|
|
|
wx_platform_url = "https://api.dataplatform.cloud.ibm.com" |
|
regions = { |
|
"US": "https://us-south.ml.cloud.ibm.com", |
|
"EU": "https://eu-de.ml.cloud.ibm.com", |
|
"GB": "https://eu-gb.ml.cloud.ibm.com", |
|
"JP": "https://jp-tok.ml.cloud.ibm.com", |
|
"AU": "https://au-syd.ml.cloud.ibm.com", |
|
"CA": "https://ca-tor.ml.cloud.ibm.com" |
|
} |
|
|
|
|
|
client_instantiation_form = ( |
|
mo.md(''' |
|
###**watsonx.ai credentials:** |
|
|
|
{wx_region} |
|
|
|
{wx_api_key} |
|
|
|
{space_id} |
|
''').style(max_height="300px", overflow="auto", border_color="blue") |
|
.batch( |
|
wx_region = mo.ui.dropdown(regions, label="Select your watsonx.ai region:", value="US", searchable=True), |
|
wx_api_key = mo.ui.text(placeholder="Add your IBM Cloud api-key...", label="IBM Cloud Api-key:", kind="password"), |
|
|
|
space_id = mo.ui.text(placeholder="Add your watsonx.ai space_id...", label="Space_ID:", kind="text") |
|
,) |
|
.form(show_clear_button=True, bordered=False) |
|
) |
|
|
|
|
|
client_instantiation_form |
|
return client_instantiation_form, regions, wx_platform_url |
|
|
|
|
|
@app.cell |
|
def _(client_instantiation_form, mo): |
|
from ibm_watsonx_ai import APIClient, Credentials |
|
|
|
def setup_task_credentials(deployment_client): |
|
|
|
existing_credentials = deployment_client.task_credentials.get_details() |
|
|
|
|
|
if "resources" in existing_credentials and existing_credentials["resources"]: |
|
for cred in existing_credentials["resources"]: |
|
cred_id = deployment_client.task_credentials.get_id(cred) |
|
deployment_client.task_credentials.delete(cred_id) |
|
|
|
|
|
return deployment_client.task_credentials.store() |
|
|
|
if client_instantiation_form.value: |
|
|
|
wx_credentials = Credentials( |
|
url=client_instantiation_form.value["wx_region"], |
|
api_key=client_instantiation_form.value["wx_api_key"] |
|
) |
|
|
|
|
|
deployment_client = APIClient(credentials=wx_credentials, space_id=client_instantiation_form.value["space_id"]) |
|
|
|
task_credentials_details = setup_task_credentials(deployment_client) |
|
else: |
|
|
|
deployment_client = None |
|
task_credentials_details = None |
|
|
|
template_variant = mo.ui.dropdown(["Base","Stream Files to IBM COS [Example]"], label="Code Template:", value="Base") |
|
|
|
if deployment_client is not None: |
|
client_callout_kind = "success" |
|
else: |
|
client_callout_kind = "neutral" |
|
|
|
client_callout = mo.callout(template_variant, kind=client_callout_kind) |
|
|
|
client_callout |
|
return ( |
|
APIClient, |
|
Credentials, |
|
client_callout, |
|
client_callout_kind, |
|
deployment_client, |
|
|
|
task_credentials_details, |
|
template_variant, |
|
wx_credentials, |
|
) |
|
|
|
|
|
@app.cell |
|
def _(mo, template_variant): |
|
|
|
if template_variant.value == "Stream Files to IBM COS [Example]": |
|
with open("stream_files_to_cos.py", "r") as file: |
|
template = file.read() |
|
else: |
|
template = '''def your_function_name(): |
|
|
|
import subprocess |
|
subprocess.check_output('pip install gensim', shell=True) |
|
import gensim |
|
|
|
def score(input_data): |
|
message_from_input_payload = payload.get("input_data")[0].get("values")[0][0] |
|
response_message = "Received message - {0}".format(message_from_input_payload) |
|
|
|
# Score using the pre-defined model |
|
score_response = { |
|
'predictions': [{'fields': ['Response_message_field', 'installed_lib_version'], |
|
'values': [[response_message, gensim.__version__]] |
|
}] |
|
} |
|
return score_response |
|
|
|
return score |
|
|
|
score = your_function_name() |
|
''' |
|
|
|
function_editor = ( |
|
mo.md(''' |
|
#### **Create your function by editing the template:** |
|
|
|
{editor} |
|
|
|
''') |
|
.batch( |
|
editor = mo.ui.code_editor(value=template, language="python", min_height=50) |
|
) |
|
.form(show_clear_button=True, bordered=False) |
|
) |
|
|
|
function_editor |
|
return file, function_editor, template |
|
|
|
|
|
@app.cell |
|
def _(function_editor, mo, os): |
|
if function_editor.value: |
|
|
|
code = function_editor.value['editor'] |
|
|
|
namespace = {} |
|
|
|
exec(code, namespace) |
|
|
|
|
|
function_name = None |
|
for name, obj in namespace.items(): |
|
if callable(obj) and name != "__builtins__": |
|
function_name = name |
|
break |
|
|
|
if function_name: |
|
|
|
deployable_function = namespace[function_name] |
|
|
|
mo.md(f"Created deployable function from '{function_name}'") |
|
|
|
save_dir = "/tmp/notebook_functions" |
|
os.makedirs(save_dir, exist_ok=True) |
|
|
|
file_path = os.path.join(save_dir, f"{function_name}.py") |
|
with open(file_path, "w") as f: |
|
f.write(code) |
|
else: |
|
mo.md("No function found in the editor code") |
|
return ( |
|
code, |
|
deployable_function, |
|
f, |
|
file_path, |
|
function_name, |
|
name, |
|
namespace, |
|
obj, |
|
save_dir, |
|
) |
|
|
|
|
|
@app.cell |
|
def _(deployment_client, mo, pd): |
|
if deployment_client: |
|
supported_specs = deployment_client.software_specifications.list()[ |
|
deployment_client.software_specifications.list()['STATE'] == 'supported' |
|
] |
|
|
|
|
|
supported_specs = supported_specs.reset_index(drop=True) |
|
|
|
|
|
framework_mapping = { |
|
"tensorflow_rt24.1-py3.11": "TensorFlow", |
|
"pytorch-onnx_rt24.1-py3.11": "PyTorch", |
|
"onnxruntime_opset_19": "ONNX or ONNXRuntime", |
|
"runtime-24.1-py3.11": "AI Services/Python Functions/Python Scripts", |
|
"autoai-ts_rt24.1-py3.11": "AutoAI", |
|
"autoai-kb_rt24.1-py3.11": "AutoAI", |
|
"runtime-24.1-py3.11-cuda": "CUDA-enabled (GPU) Python Runtime", |
|
"runtime-24.1-r4.3": "R Runtime 4.3", |
|
"spark-mllib_3.4": "Apache Spark 3.4", |
|
"autoai-rag_rt24.1-py3.11": "AutoAI RAG" |
|
} |
|
|
|
|
|
preferred_order = [ |
|
"runtime-24.1-py3.11", |
|
"runtime-24.1-py3.11-cuda", |
|
"runtime-24.1-r4.3", |
|
"ai-service-v5-software-specification", |
|
"autoai-rag_rt24.1-py3.11", |
|
"autoai-ts_rt24.1-py3.11", |
|
"autoai-kb_rt24.1-py3.11", |
|
"tensorflow_rt24.1-py3.11", |
|
"pytorch-onnx_rt24.1-py3.11", |
|
"onnxruntime_opset_19", |
|
"spark-mllib_3.4", |
|
] |
|
|
|
|
|
supported_specs['SORT_ORDER'] = supported_specs['NAME'].apply( |
|
lambda x: preferred_order.index(x) if x in preferred_order else len(preferred_order) |
|
) |
|
|
|
|
|
supported_specs = supported_specs.sort_values('SORT_ORDER').reset_index(drop=True) |
|
|
|
|
|
supported_specs = supported_specs.drop(columns=['SORT_ORDER']) |
|
|
|
|
|
if 'REPLACEMENT' in supported_specs.columns: |
|
supported_specs = supported_specs.drop(columns=['REPLACEMENT']) |
|
|
|
|
|
supported_specs['NOTES'] = supported_specs['NAME'].map(framework_mapping).fillna("Other") |
|
|
|
|
|
selection_table = mo.ui.table( |
|
supported_specs, |
|
selection="single", |
|
label="#### **Select a supported software_spec runtime for your function asset** (For Python Functions select - *'runtime-24.1-py3.11'* ):", |
|
initial_selection=[0], |
|
page_size=6 |
|
) |
|
else: |
|
sel_df = pd.DataFrame( |
|
data=[["ID", "Activate deployment_client."]], |
|
columns=["ID", "VALUE"] |
|
) |
|
|
|
selection_table = mo.ui.table( |
|
sel_df, |
|
selection="single", |
|
label="You haven't activated the Deployment_Client", |
|
initial_selection=[0] |
|
) |
|
|
|
|
|
mo.md(f"""--- |
|
<br> |
|
<br> |
|
{selection_table} |
|
<br> |
|
<br> |
|
--- |
|
<br> |
|
<br> |
|
""") |
|
return ( |
|
framework_mapping, |
|
preferred_order, |
|
sel_df, |
|
selection_table, |
|
supported_specs, |
|
) |
|
|
|
|
|
@app.cell |
|
def _(mo): |
|
input_schema_checkbox = mo.ui.checkbox(label="Add input schema (optional)") |
|
output_schema_checkbox = mo.ui.checkbox(label="Add output schema (optional)") |
|
sample_input_checkbox = mo.ui.checkbox(label="Add sample input example (optional)") |
|
return input_schema_checkbox, output_schema_checkbox, sample_input_checkbox |
|
|
|
|
|
@app.cell |
|
def _( |
|
input_schema_checkbox, |
|
mo, |
|
output_schema_checkbox, |
|
sample_input_checkbox, |
|
selection_table, |
|
template_variant, |
|
): |
|
if selection_table.value['ID'].iloc[0]: |
|
|
|
if template_variant.value == "Stream Files to IBM COS [Example]": |
|
fnc_nm = "stream_file_to_cos" |
|
else: |
|
fnc_nm = "your_function_name" |
|
|
|
uploaded_function_name = mo.ui.text(placeholder="<Must be the same as the name in editor>", label="Function Name:", kind="text", value=f"{fnc_nm}", full_width=False) |
|
tags_editor = mo.ui.array( |
|
[mo.ui.text(placeholder="Metadata Tags..."), mo.ui.text(), mo.ui.text()], |
|
label="Optional Metadata Tags" |
|
) |
|
software_spec = selection_table.value['ID'].iloc[0] |
|
|
|
description_input = mo.ui.text_area( |
|
placeholder="Write a description for your function...)", |
|
label="Description", |
|
max_length=256, |
|
rows=5, |
|
full_width=True |
|
) |
|
|
|
|
|
func_metadata=mo.hstack([ |
|
description_input, |
|
mo.hstack([ |
|
uploaded_function_name, |
|
tags_editor, |
|
], justify="start", gap=1, align="start", wrap=True) |
|
], |
|
widths=[0.6,0.4], |
|
gap=2.75 |
|
) |
|
|
|
schema_metadata=mo.hstack([ |
|
input_schema_checkbox, |
|
output_schema_checkbox, |
|
sample_input_checkbox |
|
], |
|
justify="center", gap=1, align="center", wrap=True |
|
) |
|
|
|
|
|
mo.vstack([ |
|
func_metadata, |
|
mo.md("**Make sure to click the checkboxes before filling in descriptions and tags or they will reset.**"), |
|
schema_metadata |
|
], |
|
align="center", |
|
gap=2 |
|
) |
|
return ( |
|
description_input, |
|
fnc_nm, |
|
func_metadata, |
|
schema_metadata, |
|
software_spec, |
|
tags_editor, |
|
uploaded_function_name, |
|
) |
|
|
|
|
|
@app.cell |
|
def _(json, mo): |
|
if template_variant.value == "Stream Files to IBM COS [Example]": |
|
from cos_stream_schema_examples import input_schema, output_schema, sample_input |
|
else: |
|
input_schema = [ |
|
{ |
|
'id': '1', |
|
'type': 'struct', |
|
'fields': [ |
|
{ |
|
'name': '<variable name 1>', |
|
'type': 'string', |
|
'nullable': False, |
|
'metadata': {} |
|
}, |
|
{ |
|
'name': '<variable name 2>', |
|
'type': 'string', |
|
'nullable': False, |
|
'metadata': {} |
|
} |
|
] |
|
} |
|
] |
|
|
|
output_schema = [ |
|
{ |
|
'id': '1', |
|
'type': 'struct', |
|
'fields': [ |
|
{ |
|
'name': '<output return name>', |
|
'type': 'string', |
|
'nullable': False, |
|
'metadata': {} |
|
} |
|
] |
|
} |
|
] |
|
|
|
sample_input = { |
|
'input_data': [ |
|
{ |
|
'fields': ['<variable name 1>', '<variable name 2>'], |
|
'values': [ |
|
['<sample input value for variable 1>', '<sample input value for variable 2>'] |
|
] |
|
} |
|
] |
|
} |
|
|
|
|
|
input_schema_editor = mo.ui.code_editor(value=json.dumps(input_schema, indent=4), language="python", min_height=25) |
|
output_schema_editor = mo.ui.code_editor(value=json.dumps(output_schema, indent=4), language="python", min_height=25) |
|
sample_input_editor = mo.ui.code_editor(value=json.dumps(sample_input, indent=4), language="python", min_height=25) |
|
|
|
schema_editors = mo.accordion( |
|
{ |
|
"""**Input Schema Metadata Editor**""": input_schema_editor, |
|
"""**Output Schema Metadata Editor**""": output_schema_editor, |
|
"""**Sample Input Metadata Editor**""": sample_input_editor |
|
}, multiple=True |
|
) |
|
|
|
schema_editors |
|
return ( |
|
input_schema, |
|
input_schema_editor, |
|
output_schema, |
|
output_schema_editor, |
|
sample_input, |
|
sample_input_editor, |
|
schema_editors, |
|
) |
|
|
|
|
|
@app.cell |
|
def _( |
|
ast, |
|
deployment_client, |
|
description_input, |
|
function_editor, |
|
input_schema_checkbox, |
|
input_schema_editor, |
|
json, |
|
mo, |
|
os, |
|
output_schema_checkbox, |
|
output_schema_editor, |
|
sample_input_checkbox, |
|
sample_input_editor, |
|
selection_table, |
|
software_spec, |
|
tags_editor, |
|
uploaded_function_name, |
|
): |
|
get_upload_status, set_upload_status = mo.state("No uploads yet") |
|
|
|
function_meta = {} |
|
|
|
if selection_table.value['ID'].iloc[0] and deployment_client is not None: |
|
|
|
function_meta = { |
|
deployment_client.repository.FunctionMetaNames.NAME: f"{uploaded_function_name.value}" or "your_function_name", |
|
deployment_client.repository.FunctionMetaNames.SOFTWARE_SPEC_ID: software_spec or "45f12dfe-aa78-5b8d-9f38-0ee223c47309" |
|
} |
|
|
|
|
|
if tags_editor.value: |
|
|
|
filtered_tags = [tag for tag in tags_editor.value if tag and tag.strip()] |
|
if filtered_tags: |
|
function_meta[deployment_client.repository.FunctionMetaNames.TAGS] = filtered_tags |
|
|
|
|
|
if description_input.value: |
|
function_meta[deployment_client.repository.FunctionMetaNames.DESCRIPTION] = description_input.value |
|
|
|
|
|
if input_schema_checkbox.value: |
|
try: |
|
function_meta[deployment_client.repository.FunctionMetaNames.INPUT_DATA_SCHEMAS] = json.loads(input_schema_editor.value) |
|
except json.JSONDecodeError: |
|
|
|
function_meta[deployment_client.repository.FunctionMetaNames.INPUT_DATA_SCHEMAS] = ast.literal_eval(input_schema_editor.value) |
|
|
|
|
|
if output_schema_checkbox.value: |
|
try: |
|
function_meta[deployment_client.repository.FunctionMetaNames.OUTPUT_DATA_SCHEMAS] = json.loads(output_schema_editor.value) |
|
except json.JSONDecodeError: |
|
|
|
function_meta[deployment_client.repository.FunctionMetaNames.OUTPUT_DATA_SCHEMAS] = ast.literal_eval(output_schema_editor.value) |
|
|
|
|
|
if sample_input_checkbox.value: |
|
try: |
|
function_meta[deployment_client.repository.FunctionMetaNames.SAMPLE_SCORING_INPUT] = json.loads(sample_input_editor.value) |
|
except json.JSONDecodeError: |
|
|
|
function_meta[deployment_client.repository.FunctionMetaNames.SAMPLE_SCORING_INPUT] = ast.literal_eval(sample_input_editor.value) |
|
|
|
def upload_function(function_meta, use_function_object=True): |
|
""" |
|
Uploads a Python function to watsonx.ai as a deployable asset. |
|
Parameters: |
|
function_meta (dict): Metadata for the function |
|
use_function_object (bool): Whether to use function object (True) or file path (False) |
|
Returns: |
|
dict: Details of the uploaded function |
|
""" |
|
|
|
original_dir = os.getcwd() |
|
|
|
try: |
|
|
|
code_to_deploy = function_editor.value['editor'] |
|
|
|
func_name = uploaded_function_name.value or "your_function_name" |
|
|
|
function_meta[deployment_client.repository.FunctionMetaNames.NAME] = func_name |
|
|
|
save_dir = "/tmp/notebook_functions" |
|
os.makedirs(save_dir, exist_ok=True) |
|
file_path = f"{save_dir}/{func_name}.py" |
|
with open(file_path, "w", encoding="utf-8") as f: |
|
f.write(code_to_deploy) |
|
|
|
if use_function_object: |
|
|
|
import sys |
|
import importlib.util |
|
|
|
sys.path.append(save_dir) |
|
|
|
spec = importlib.util.spec_from_file_location(func_name, file_path) |
|
module = importlib.util.module_from_spec(spec) |
|
spec.loader.exec_module(module) |
|
|
|
function_object = getattr(module, func_name) |
|
|
|
|
|
os.chdir('/tmp') |
|
|
|
|
|
mo.md(f"Uploading function object: {func_name}") |
|
func_details = deployment_client.repository.store_function(function_object, function_meta) |
|
else: |
|
|
|
os.chdir('/tmp') |
|
|
|
|
|
mo.md(f"Uploading function from file: {file_path}") |
|
func_details = deployment_client.repository.store_function(file_path, function_meta) |
|
|
|
set_upload_status(f"Latest Upload - id - {func_details['metadata']['id']}") |
|
return func_details |
|
except Exception as e: |
|
set_upload_status(f"Error uploading function: {str(e)}") |
|
mo.md(f"Detailed error: {str(e)}") |
|
raise |
|
finally: |
|
|
|
os.chdir(original_dir) |
|
|
|
upload_status = mo.state("No uploads yet") |
|
|
|
upload_button = mo.ui.button( |
|
label="Upload Function", |
|
on_click=lambda _: upload_function(function_meta, use_function_object=True), |
|
kind="success", |
|
tooltip="Click to upload function to watsonx.ai" |
|
) |
|
|
|
function_meta |
|
return ( |
|
filtered_tags, |
|
function_meta, |
|
get_upload_status, |
|
set_upload_status, |
|
upload_button, |
|
upload_function, |
|
upload_status, |
|
) |
|
|
|
|
|
@app.cell |
|
def _(get_upload_status, mo, upload_button): |
|
|
|
if upload_button.value: |
|
try: |
|
upload_result = upload_button.value |
|
artifact_id = upload_result['metadata']['id'] |
|
except Exception as e: |
|
mo.md(f"Error: {str(e)}") |
|
|
|
upload_func = mo.vstack([ |
|
upload_button, |
|
mo.md(f"**Status:** {get_upload_status()}") |
|
], justify="space-around", align="center") |
|
return artifact_id, upload_func, upload_result |
|
|
|
|
|
@app.cell |
|
def _(deployment_client, mo, pd, upload_button, upload_func, uuid): |
|
def reorder_hardware_specifications(df): |
|
""" |
|
Reorders a hardware specifications dataframe by type and size of environment |
|
without hardcoding specific hardware types. |
|
|
|
Parameters: |
|
df (pandas.DataFrame): The hardware specifications dataframe to reorder |
|
|
|
Returns: |
|
pandas.DataFrame: Reordered dataframe with reset index |
|
""" |
|
|
|
result_df = df.copy() |
|
|
|
|
|
def get_sort_key(name): |
|
|
|
custom_order = [ |
|
"XXS", "XS", "S", "M", "L", "XL", |
|
"XS-Spark", "S-Spark", "M-Spark", "L-Spark", "XL-Spark", |
|
"K80", "K80x2", "K80x4", |
|
"V100", "V100x2", |
|
"WXaaS-XS", "WXaaS-S", "WXaaS-M", "WXaaS-L", "WXaaS-XL", |
|
"Default Spark", "Notebook Default Spark", "ML" |
|
] |
|
|
|
|
|
if name in custom_order: |
|
return (0, custom_order.index(name)) |
|
|
|
|
|
return (1, name) |
|
|
|
|
|
result_df['sort_key'] = result_df['NAME'].apply(get_sort_key) |
|
|
|
|
|
result_df = result_df.sort_values('sort_key').drop('sort_key', axis=1) |
|
|
|
|
|
result_df = result_df.reset_index(drop=True) |
|
|
|
return result_df |
|
|
|
if deployment_client and upload_button.value: |
|
|
|
hardware_specs = deployment_client.hardware_specifications.list() |
|
hardware_specs_df = reorder_hardware_specifications(hardware_specs) |
|
|
|
|
|
hw_selection_table = mo.ui.table( |
|
hardware_specs_df, |
|
selection="single", |
|
label="#### **Select a supported hardware_specification for your deployment** *(Default: 'XS' - 1vCPU_4GB Ram)*", |
|
initial_selection=[1], |
|
page_size=6, |
|
wrapped_columns=['DESCRIPTION'] |
|
) |
|
|
|
deployment_type = mo.ui.radio( |
|
options={"Function":"Online (Function Endpoint)","Runnable Job":"Batch (Runnable Jobs)"}, value="Function", label="Select the Type of Deployment:", inline=True |
|
) |
|
uuid_suffix = str(uuid.uuid4())[:4] |
|
|
|
deployment_name = mo.ui.text(value=f"deployed_func_{uuid_suffix}", label="Deployment Name:", placeholder="<Must be completely unique>") |
|
else: |
|
hw_df = pd.DataFrame( |
|
data=[["ID", "Activate deployment_client."]], |
|
columns=["ID", "VALUE"] |
|
) |
|
|
|
hw_selection_table = mo.ui.table( |
|
hw_df, |
|
selection="single", |
|
label="You haven't activated the Deployment_Client", |
|
initial_selection=[0] |
|
) |
|
|
|
|
|
mo.md(f""" |
|
<br> |
|
<br> |
|
{upload_func} |
|
<br> |
|
<br> |
|
--- |
|
{hw_selection_table} |
|
<br> |
|
<br> |
|
|
|
|
|
""") |
|
return ( |
|
deployment_name, |
|
deployment_type, |
|
hardware_specs, |
|
hardware_specs_df, |
|
hw_df, |
|
hw_selection_table, |
|
reorder_hardware_specifications, |
|
uuid_suffix, |
|
) |
|
|
|
|
|
@app.cell |
|
def _( |
|
artifact_id, |
|
deployment_client, |
|
deployment_details, |
|
deployment_name, |
|
deployment_type, |
|
hw_selection_table, |
|
mo, |
|
print, |
|
upload_button, |
|
): |
|
def deploy_function(artifact_id, deployment_type): |
|
""" |
|
Deploys a function asset to watsonx.ai. |
|
|
|
Parameters: |
|
artifact_id (str): ID of the function artifact to deploy |
|
deployment_type (object): Type of deployment (online or batch) |
|
|
|
Returns: |
|
dict: Details of the deployed function |
|
""" |
|
if not artifact_id: |
|
print("Error: No artifact ID provided. Please upload a function first.") |
|
return None |
|
|
|
if deployment_type.value == "Online (Function Endpoint)": |
|
deployment_props = { |
|
deployment_client.deployments.ConfigurationMetaNames.NAME: deployment_name.value, |
|
deployment_client.deployments.ConfigurationMetaNames.ONLINE: {}, |
|
deployment_client.deployments.ConfigurationMetaNames.HARDWARE_SPEC: {"id": selected_hw_config}, |
|
deployment_client.deployments.ConfigurationMetaNames.SERVING_NAME: deployment_name.value, |
|
} |
|
else: |
|
deployment_props = { |
|
deployment_client.deployments.ConfigurationMetaNames.NAME: deployment_name.value, |
|
deployment_client.deployments.ConfigurationMetaNames.BATCH: {}, |
|
deployment_client.deployments.ConfigurationMetaNames.HARDWARE_SPEC: {"id": selected_hw_config}, |
|
|
|
} |
|
|
|
try: |
|
print(deployment_props) |
|
|
|
asset_details = deployment_client.repository.get_details(artifact_id) |
|
print(f"Asset found: {asset_details['metadata']['name']} with ID: {asset_details['metadata']['id']}") |
|
|
|
|
|
deployed_function = deployment_client.deployments.create(artifact_id, deployment_props) |
|
print(f"Creating deployment from Asset: {artifact_id} with deployment properties {str(deployment_props)}") |
|
return deployed_function |
|
except Exception as e: |
|
print(f"Deployment error: {str(e)}") |
|
return None |
|
|
|
def get_deployment_id(deployed_function): |
|
deployment_id = deployment_client.deployments.get_uid(deployment_details) |
|
return deployment_id |
|
|
|
def get_deployment_info(deployment_id): |
|
deployment_info = deployment_client.deployments.get_details(deployment_id) |
|
return deployment_info |
|
|
|
deployment_status = mo.state("No deployments yet") |
|
|
|
if hw_selection_table.value['ID'].iloc[0]: |
|
selected_hw_config = hw_selection_table.value['ID'].iloc[0] |
|
|
|
deploy_button = mo.ui.button( |
|
label="Deploy Function", |
|
on_click=lambda _: deploy_function(artifact_id, deployment_type), |
|
kind="success", |
|
tooltip="Click to deploy function to watsonx.ai" |
|
) |
|
|
|
if deployment_client and upload_button.value: |
|
deployment_definition = mo.hstack([ |
|
deployment_type, |
|
deployment_name |
|
], justify="space-around") |
|
else: |
|
deployment_definition = mo.hstack([ |
|
"No Deployment Type Selected", |
|
"No Deployment Name Provided" |
|
], justify="space-around") |
|
|
|
|
|
return ( |
|
deploy_button, |
|
deploy_function, |
|
deployment_definition, |
|
deployment_status, |
|
get_deployment_id, |
|
get_deployment_info, |
|
selected_hw_config, |
|
) |
|
|
|
|
|
@app.cell |
|
def _(deploy_button, deployment_definition, mo): |
|
_ = deployment_definition |
|
|
|
deploy_fnc = mo.vstack([ |
|
deploy_button, |
|
deploy_button.value |
|
], justify="space-around", align="center") |
|
|
|
mo.md(f""" |
|
{deployment_definition} |
|
<br> |
|
<br> |
|
{deploy_fnc} |
|
|
|
--- |
|
""") |
|
return (deploy_fnc,) |
|
|
|
|
|
@app.cell(hide_code=True) |
|
def _(deployment_client, mo): |
|
|
|
|
|
def get_deployment_list(): |
|
deployment_df = deployment_client.deployments.list() |
|
return deployment_df |
|
|
|
def get_deployment_ids(df): |
|
dep_list = df['ID'].tolist() |
|
return dep_list |
|
|
|
def get_data_assets_list(): |
|
data_assets_df = deployment_client.data_assets.list() |
|
return data_assets_df |
|
|
|
def get_data_asset_ids(df): |
|
data_asset_list = df['ASSET_ID'].tolist() |
|
return data_asset_list |
|
|
|
|
|
def get_repository_list(): |
|
repository_df = deployment_client.repository.list() |
|
return repository_df |
|
|
|
def get_repository_ids(df): |
|
repository_list = df['ID'].tolist() |
|
return repository_list |
|
|
|
def delete_with_progress(ids_list, delete_function, item_type="items"): |
|
""" |
|
Generic wrapper that adds a progress bar to any deletion function |
|
|
|
Parameters: |
|
ids_list: List of IDs to delete |
|
delete_function: Function that deletes a single ID |
|
item_type: String describing what's being deleted (for display) |
|
""" |
|
with mo.status.progress_bar( |
|
total=len(ids_list) or 1, |
|
title=f"Purging {item_type}", |
|
subtitle=f"Deleting {item_type}...", |
|
completion_title="Purge Complete", |
|
completion_subtitle=f"Successfully deleted {len(ids_list)} {item_type}" |
|
) as progress: |
|
for item_id in ids_list: |
|
delete_function(item_id) |
|
progress.update(increment=1) |
|
return f"Deleted {len(ids_list)} {item_type} successfully" |
|
|
|
|
|
def delete_deployments(deployment_ids): |
|
return delete_with_progress( |
|
deployment_ids, |
|
lambda id: deployment_client.deployments.delete(id), |
|
"deployments" |
|
) |
|
|
|
def delete_data_assets(data_asset_ids): |
|
return delete_with_progress( |
|
data_asset_ids, |
|
lambda id: deployment_client.data_assets.delete(id), |
|
"data assets" |
|
) |
|
|
|
def delete_repository_items(repository_ids): |
|
return delete_with_progress( |
|
repository_ids, |
|
lambda id: deployment_client.repository.delete(id), |
|
"repository items" |
|
) |
|
return ( |
|
delete_data_assets, |
|
delete_deployments, |
|
delete_repository_items, |
|
delete_with_progress, |
|
get_data_asset_ids, |
|
get_data_assets_list, |
|
get_deployment_ids, |
|
get_deployment_list, |
|
get_repository_ids, |
|
get_repository_list, |
|
) |
|
|
|
|
|
@app.cell |
|
def _(get_deployment_id_list, get_deployments_button, mo, purge_deployments): |
|
deployments_purge_stack = mo.hstack([get_deployments_button, get_deployment_id_list, purge_deployments]) |
|
deployments_purge_stack_results = mo.vstack([get_deployments_button.value, get_deployment_id_list.value, purge_deployments.value]) |
|
|
|
deployments_purge_tab = mo.vstack([deployments_purge_stack, deployments_purge_stack_results]) |
|
return ( |
|
deployments_purge_stack, |
|
deployments_purge_stack_results, |
|
deployments_purge_tab, |
|
) |
|
|
|
|
|
@app.cell |
|
def _(get_repository_button, get_repository_id_list, mo, purge_repository): |
|
repository_purge_stack = mo.hstack([get_repository_button, get_repository_id_list, purge_repository]) |
|
|
|
repository_purge_stack_results = mo.vstack([get_repository_button.value, get_repository_id_list.value, purge_repository.value]) |
|
|
|
repository_purge_tab = mo.vstack([repository_purge_stack, repository_purge_stack_results]) |
|
return ( |
|
repository_purge_stack, |
|
repository_purge_stack_results, |
|
repository_purge_tab, |
|
) |
|
|
|
|
|
@app.cell |
|
def _(get_data_asset_id_list, get_data_assets_button, mo, purge_data_assets): |
|
data_assets_purge_stack = mo.hstack([get_data_assets_button, get_data_asset_id_list, purge_data_assets]) |
|
data_assets_purge_stack_results = mo.vstack([get_data_assets_button.value, get_data_asset_id_list.value, purge_data_assets.value]) |
|
|
|
data_assets_purge_tab = mo.vstack([data_assets_purge_stack, data_assets_purge_stack_results]) |
|
return ( |
|
data_assets_purge_stack, |
|
data_assets_purge_stack_results, |
|
data_assets_purge_tab, |
|
) |
|
|
|
|
|
@app.cell |
|
def _(data_assets_purge_tab, deployments_purge_tab, mo, repository_purge_tab): |
|
purge_tabs = mo.ui.tabs( |
|
{"Purge Deployments": deployments_purge_tab, "Purge Repository Assets": repository_purge_tab,"Purge Data Assets": data_assets_purge_tab }, lazy=False |
|
) |
|
|
|
asset_purge = mo.accordion( |
|
{ |
|
"""<br> |
|
#### **Supporting Cleanup Functionality, lists of different assets and purge them if needed** *(purges all detected)* |
|
<br>""": purge_tabs, |
|
} |
|
) |
|
|
|
asset_purge |
|
return asset_purge, purge_tabs |
|
|
|
|
|
@app.cell(hide_code=True) |
|
def _( |
|
delete_data_assets, |
|
delete_deployments, |
|
delete_repository_items, |
|
get_data_asset_ids, |
|
get_data_assets_list, |
|
get_deployment_ids, |
|
get_deployment_list, |
|
get_repository_ids, |
|
get_repository_list, |
|
mo, |
|
): |
|
|
|
get_data_assets_button = mo.ui.button( |
|
label="Get Data Assets Dataframe", |
|
on_click=lambda _: get_data_assets_list(), |
|
kind="neutral", |
|
) |
|
|
|
get_data_asset_id_list = mo.ui.button( |
|
label="Turn Dataframe into List of IDs", |
|
on_click=lambda _: get_data_asset_ids(get_data_assets_button.value), |
|
kind="neutral", |
|
) |
|
|
|
purge_data_assets = mo.ui.button( |
|
label="Purge Data Assets", |
|
on_click=lambda _: delete_data_assets(get_data_asset_id_list.value), |
|
kind="danger", |
|
) |
|
|
|
|
|
get_deployments_button = mo.ui.button( |
|
label="Get Deployments Dataframe", |
|
on_click=lambda _: get_deployment_list(), |
|
kind="neutral", |
|
) |
|
|
|
get_deployment_id_list = mo.ui.button( |
|
label="Turn Dataframe into List of IDs", |
|
on_click=lambda _: get_deployment_ids(get_deployments_button.value), |
|
kind="neutral", |
|
) |
|
|
|
purge_deployments = mo.ui.button( |
|
label="Purge Deployments", |
|
on_click=lambda _: delete_deployments(get_deployment_id_list.value), |
|
kind="danger", |
|
) |
|
|
|
|
|
get_repository_button = mo.ui.button( |
|
label="Get Repository Dataframe", |
|
on_click=lambda _: get_repository_list(), |
|
kind="neutral", |
|
) |
|
|
|
get_repository_id_list = mo.ui.button( |
|
label="Turn Dataframe into List of IDs", |
|
on_click=lambda _: get_repository_ids(get_repository_button.value), |
|
kind="neutral", |
|
) |
|
|
|
purge_repository = mo.ui.button( |
|
label="Purge Repository Items", |
|
on_click=lambda _: delete_repository_items(get_repository_id_list.value), |
|
kind="danger", |
|
) |
|
return ( |
|
get_data_asset_id_list, |
|
get_data_assets_button, |
|
get_deployment_id_list, |
|
get_deployments_button, |
|
get_repository_button, |
|
get_repository_id_list, |
|
purge_data_assets, |
|
purge_deployments, |
|
purge_repository, |
|
) |
|
|
|
|
|
if __name__ == "__main__": |
|
app.run() |
|
|