File size: 44,578 Bytes
fd936d4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 |
import marimo
__generated_with = "0.11.16"
app = marimo.App(width="medium")
@app.cell
def _():
import marimo as mo
import os
return mo, os
@app.cell
def _():
def get_markdown_content(file_path):
with open(file_path, 'r', encoding='utf-8') as file:
content = file.read()
return content
return (get_markdown_content,)
@app.cell
def _(get_markdown_content, mo):
intro_text = get_markdown_content('intro_markdown/intro.md')
intro_marimo = get_markdown_content('intro_markdown/intro_marimo.md')
intro_notebook = get_markdown_content('intro_markdown/intro_notebook.md')
intro_comparison = get_markdown_content('intro_markdown/intro_comparison.md')
intro = mo.carousel([
mo.md(f"{intro_text}"),
mo.md(f"{intro_marimo}"),
mo.md(f"{intro_notebook}"),
mo.md(f"{intro_comparison}"),
])
mo.accordion({"## Notebook Introduction":intro})
return intro, intro_comparison, intro_marimo, intro_notebook, intro_text
@app.cell
def _(os):
### Imports
from typing import (
Any, Dict, List, Optional, Pattern, Set, Union, Tuple
)
from pathlib import Path
from urllib.request import urlopen
# from rich.markdown import Markdown as Markd
from rich.text import Text
from rich import print
from tqdm import tqdm
from enum import Enum
import pandas as pd
import tempfile
import requests
import getpass
import urllib3
import base64
import time
import json
import uuid
import ssl
import ast
import re
pd.set_option('display.max_columns', None)
pd.set_option('display.max_rows', None)
pd.set_option('display.max_colwidth', None)
pd.set_option('display.width', None)
# Set explicit temporary directory
os.environ['TMPDIR'] = '/tmp'
# Make sure Python's tempfile module also uses this directory
tempfile.tempdir = '/tmp'
return (
Any,
Dict,
Enum,
List,
Optional,
Path,
Pattern,
Set,
Text,
Tuple,
Union,
ast,
base64,
getpass,
json,
pd,
print,
re,
requests,
ssl,
tempfile,
time,
tqdm,
urllib3,
urlopen,
uuid,
)
@app.cell
def _(mo):
### Credentials for the watsonx.ai SDK client
# Endpoints
wx_platform_url = "https://api.dataplatform.cloud.ibm.com"
regions = {
"US": "https://us-south.ml.cloud.ibm.com",
"EU": "https://eu-de.ml.cloud.ibm.com",
"GB": "https://eu-gb.ml.cloud.ibm.com",
"JP": "https://jp-tok.ml.cloud.ibm.com",
"AU": "https://au-syd.ml.cloud.ibm.com",
"CA": "https://ca-tor.ml.cloud.ibm.com"
}
# Create a form with multiple elements
client_instantiation_form = (
mo.md('''
###**watsonx.ai credentials:**
{wx_region}
{wx_api_key}
{space_id}
''').style(max_height="300px", overflow="auto", border_color="blue")
.batch(
wx_region = mo.ui.dropdown(regions, label="Select your watsonx.ai region:", value="US", searchable=True),
wx_api_key = mo.ui.text(placeholder="Add your IBM Cloud api-key...", label="IBM Cloud Api-key:", kind="password"),
# project_id = mo.ui.text(placeholder="Add your watsonx.ai project_id...", label="Project_ID:", kind="text"),
space_id = mo.ui.text(placeholder="Add your watsonx.ai space_id...", label="Space_ID:", kind="text")
,)
.form(show_clear_button=True, bordered=False)
)
# client_instantiation_form
return client_instantiation_form, regions, wx_platform_url
@app.cell
def _(client_instantiation_form, mo):
from ibm_watsonx_ai import APIClient, Credentials
def setup_task_credentials(deployment_client):
# Get existing task credentials
existing_credentials = deployment_client.task_credentials.get_details()
# Delete existing credentials if any
if "resources" in existing_credentials and existing_credentials["resources"]:
for cred in existing_credentials["resources"]:
cred_id = deployment_client.task_credentials.get_id(cred)
deployment_client.task_credentials.delete(cred_id)
# Store new credentials
return deployment_client.task_credentials.store()
if client_instantiation_form.value:
### Instantiate the watsonx.ai client
wx_credentials = Credentials(
url=client_instantiation_form.value["wx_region"],
api_key=client_instantiation_form.value["wx_api_key"]
)
# project_client = APIClient(credentials=wx_credentials, project_id=client_instantiation_form.value["project_id"])
deployment_client = APIClient(credentials=wx_credentials, space_id=client_instantiation_form.value["space_id"])
task_credentials_details = setup_task_credentials(deployment_client)
else:
# project_client = None
deployment_client = None
task_credentials_details = None
template_variant = mo.ui.dropdown(["Base","Stream Files to IBM COS [Example]"], label="Code Template:", value="Base")
if deployment_client is not None:
client_callout_kind = "success"
else:
client_callout_kind = "neutral"
client_callout = mo.callout(template_variant, kind=client_callout_kind)
# client_callout
return (
APIClient,
Credentials,
client_callout,
client_callout_kind,
deployment_client,
setup_task_credentials,
task_credentials_details,
template_variant,
wx_credentials,
)
@app.cell
def _(
client_callout,
client_instantiation_form,
deploy_fnc,
deployment_definition,
fm,
function_editor,
hw_selection_table,
mo,
purge_tabs,
sc_m,
schema_editors,
selection_table,
upload_func,
):
s1 = mo.md(f'''
###**Instantiate your watsonx.ai client:**
1. Select a region from the dropdown menu
2. Provide an IBM Cloud Apikey and watsonx.ai deployment space id
3. Once you submit, the area with the code template will turn green if successful
4. Select a base (provide baseline format) or example code function template
---
{client_instantiation_form}
---
{client_callout}
''')
sc_tabs = mo.ui.tabs(
{
"Schema Option Selection": sc_m,
"Schema Definition": mo.md(f"""
####**Edit the schema definitions you selected in the previous tab.**<br>
{schema_editors}"""),
}
)
s2 = mo.md(f'''###**Create your function from the template:**
1. Use the code editor window to create a function to deploy
<br>
The function must:
<br>
--- Include a payload and score element
<br>
--- Have the same function name in both the score = <name>() segment and the Function Name input field below
<br>
--- Additional details can be found here -> [watsonx.ai - Writing deployable Python functions
](https://dataplatform.cloud.ibm.com/docs/content/wsj/analyze-data/ml-deploy-py-function-write.html?utm_medium=Exinfluencer&utm_source=ibm_developer&utm_content=in_content_link&utm_term=10006555&utm_id=blogs_awb-tekton-optimizations-for-kubeflow-pipelines-2-0&context=wx&audience=wdp)
3. Click submit, then proceed to select whether you wish to add:
<br>
--- An input schema (describing the format of the variables the function takes) **[Optional]**
<br>
--- An output schema (describing the format of the output results the function returns) **[Optional]**
<br>
--- An sample input example (showing an example of a mapping of the input and output schema to actual values.) **[Optional]**
4. Fill in the function name field **(must be exactly the same as in the function editor)**
5. Add a description and metadata tags **[Optional]**
---
{function_editor}
---
{sc_tabs}
---
{fm}
''')
s3 = mo.md(f'''
###**Review and Upload your function**
1. Review the function metadata specs JSON
2. Select a software specification if necessary (default for python functions is pre-selected), this is the runtime environment of python that your function will run in. Environments on watsonx.ai come pre-packaged with many different libraries, if necessary install new ones by adding them into the function as a `subprocess.check_output('pip install <package_name>', shell=True)` command.
3. Once your are satisfied, click the upload function button and wait for the response.
> If you see no table of software specs, you haven't activated your watsonx.ai client.
---
{selection_table}
---
{upload_func}
''')
s4 = mo.md(f'''
###**Deploy your function:**
1. Select a hardware specification (vCPUs/GB) that you want your function deployed on
<br>
--- XXS and XS cost the same (0.5 CUH per hour, so XS is the better option
<br>
--- Select larger instances for more resource intensive tasks or runnable jobs
2. Select the type of deployment:
<br>
--- Function (Online) for always-on endpoints - Always available and low latency, but consume resources continuously for every hour they are deployed.
<br>
--- Batch (Batch) for runnable jobs - Only consume resources during job runs, but aren't as flexible to deploy.
3. If you've selected Function, pick a completely unique (globally, not just your account) deployment serving name that will be in the endpoint url.
4. Once your are satisfied, click the deploy function button and wait for the response.
---
{hw_selection_table}
---
{deployment_definition}
---
{deploy_fnc}
''')
s5 = mo.md(f'''
###**Helper Purge Functions:**
These functions help you retrieve and mass delete ***(WARNING: purges all at once)*** deployments, data assets or repository assets (functions, models, etc.) that you have in the deployment space. This is meant to support fast cleanup.
Select the tab based on what you want to delete, then click each of the buttons one by one after the previous gives a response.
---
{purge_tabs}
''')
sections = mo.accordion(
{
"Section 1: **watsonx.ai Credentials**": s1,
"Section 2: **Function Creation**": s2,
"Section 3: **Function Upload**": s3,
"Section 4: **Function Deployment**": s4,
"Section 5: **Helper Functions**": s5,
},
multiple=True
)
sections
return s1, s2, s3, s4, s5, sc_tabs, sections
@app.cell
def _(mo, template_variant):
# Template for WatsonX.ai deployable function
if template_variant.value == "Stream Files to IBM COS [Example]":
with open("stream_files_to_cos.py", "r") as file:
template = file.read()
else:
template = '''def your_function_name():
import subprocess
subprocess.check_output('pip install gensim', shell=True)
import gensim
def score(input_data):
message_from_input_payload = payload.get("input_data")[0].get("values")[0][0]
response_message = "Received message - {0}".format(message_from_input_payload)
# Score using the pre-defined model
score_response = {
'predictions': [{'fields': ['Response_message_field', 'installed_lib_version'],
'values': [[response_message, gensim.__version__]]
}]
}
return score_response
return score
score = your_function_name()
'''
function_editor = (
mo.md('''
#### **Create your function by editing the template:**
{editor}
''')
.batch(
editor = mo.ui.code_editor(value=template, language="python", min_height=50)
)
.form(show_clear_button=True, bordered=False)
)
# function_editor
return file, function_editor, template
@app.cell
def _(function_editor, mo, os):
if function_editor.value:
# Get the edited code from the function editor
code = function_editor.value['editor']
# Create a namespace to execute the code in
namespace = {}
# Execute the code
exec(code, namespace)
# Find the first function defined in the namespace
function_name = None
for name, obj in namespace.items():
if callable(obj) and name != "__builtins__":
function_name = name
break
if function_name:
# Instantiate the deployable function
deployable_function = namespace[function_name]
# Now deployable_function contains the score function
mo.md(f"Created deployable function from '{function_name}'")
# Create the directory if it doesn't exist
save_dir = "/tmp/notebook_functions"
os.makedirs(save_dir, exist_ok=True)
# Save the function code to a file
file_path = os.path.join(save_dir, f"{function_name}.py")
with open(file_path, "w") as f:
f.write(code)
else:
mo.md("No function found in the editor code")
return (
code,
deployable_function,
f,
file_path,
function_name,
name,
namespace,
obj,
save_dir,
)
@app.cell
def _(deployment_client, mo, pd):
if deployment_client:
supported_specs = deployment_client.software_specifications.list()[
deployment_client.software_specifications.list()['STATE'] == 'supported'
]
# Reset the index to start from 0
supported_specs = supported_specs.reset_index(drop=True)
# Create a mapping dictionary for framework names based on software specifications
framework_mapping = {
"tensorflow_rt24.1-py3.11": "TensorFlow",
"pytorch-onnx_rt24.1-py3.11": "PyTorch",
"onnxruntime_opset_19": "ONNX or ONNXRuntime",
"runtime-24.1-py3.11": "AI Services/Python Functions/Python Scripts",
"autoai-ts_rt24.1-py3.11": "AutoAI",
"autoai-kb_rt24.1-py3.11": "AutoAI",
"runtime-24.1-py3.11-cuda": "CUDA-enabled (GPU) Python Runtime",
"runtime-24.1-r4.3": "R Runtime 4.3",
"spark-mllib_3.4": "Apache Spark 3.4",
"autoai-rag_rt24.1-py3.11": "AutoAI RAG"
}
# Define the preferred order for items to appear at the top
preferred_order = [
"runtime-24.1-py3.11",
"runtime-24.1-py3.11-cuda",
"runtime-24.1-r4.3",
"ai-service-v5-software-specification",
"autoai-rag_rt24.1-py3.11",
"autoai-ts_rt24.1-py3.11",
"autoai-kb_rt24.1-py3.11",
"tensorflow_rt24.1-py3.11",
"pytorch-onnx_rt24.1-py3.11",
"onnxruntime_opset_19",
"spark-mllib_3.4",
]
# Create a new column for sorting
supported_specs['SORT_ORDER'] = supported_specs['NAME'].apply(
lambda x: preferred_order.index(x) if x in preferred_order else len(preferred_order)
)
# Sort the DataFrame by the new column
supported_specs = supported_specs.sort_values('SORT_ORDER').reset_index(drop=True)
# Drop the sorting column as it's no longer needed
supported_specs = supported_specs.drop(columns=['SORT_ORDER'])
# Drop the REPLACEMENT column if it exists and add NOTES column
if 'REPLACEMENT' in supported_specs.columns:
supported_specs = supported_specs.drop(columns=['REPLACEMENT'])
# Add NOTES column with framework information
supported_specs['NOTES'] = supported_specs['NAME'].map(framework_mapping).fillna("Other")
# Create a table with single-row selection
selection_table = mo.ui.table(
supported_specs,
selection="single", # Only allow selecting one row
label="#### **Select a supported software_spec runtime for your function asset** (For Python Functions select - *'runtime-24.1-py3.11'* ):",
initial_selection=[0], # Now selecting the first row, which should be runtime-24.1-py3.11
page_size=6
)
else:
sel_df = pd.DataFrame(
data=[["ID", "Activate deployment_client."]],
columns=["ID", "VALUE"]
)
selection_table = mo.ui.table(
sel_df,
selection="single", # Only allow selecting one row
label="You haven't activated the Deployment_Client",
initial_selection=[0]
)
# # Display the table
# mo.md(f"""---
# <br>
# <br>
# {selection_table}
# <br>
# <br>
# ---
# <br>
# <br>
# """)
return (
framework_mapping,
preferred_order,
sel_df,
selection_table,
supported_specs,
)
@app.cell
def _(mo):
input_schema_checkbox = mo.ui.checkbox(label="Add input schema (optional)")
output_schema_checkbox = mo.ui.checkbox(label="Add output schema (optional)")
sample_input_checkbox = mo.ui.checkbox(label="Add sample input example (optional)")
return input_schema_checkbox, output_schema_checkbox, sample_input_checkbox
@app.cell
def _(
input_schema_checkbox,
mo,
output_schema_checkbox,
sample_input_checkbox,
selection_table,
template_variant,
):
if selection_table.value['ID'].iloc[0]:
# Create the input fields
if template_variant.value == "Stream Files to IBM COS [Example]":
fnc_nm = "stream_file_to_cos"
else:
fnc_nm = "your_function_name"
uploaded_function_name = mo.ui.text(placeholder="<Must be the same as the name in editor>", label="Function Name:", kind="text", value=f"{fnc_nm}", full_width=False)
tags_editor = mo.ui.array(
[mo.ui.text(placeholder="Metadata Tags..."), mo.ui.text(), mo.ui.text()],
label="Optional Metadata Tags"
)
software_spec = selection_table.value['ID'].iloc[0]
description_input = mo.ui.text_area(
placeholder="Write a description for your function...)",
label="Description",
max_length=256,
rows=5,
full_width=True
)
func_metadata=mo.hstack([
description_input,
mo.hstack([
uploaded_function_name,
tags_editor,
], justify="start", gap=1, align="start", wrap=True)
],
widths=[0.6,0.4],
gap=2.75
)
schema_metadata=mo.hstack([
input_schema_checkbox,
output_schema_checkbox,
sample_input_checkbox
],
justify="center", gap=1, align="center", wrap=True
)
# Display the metadata inputs
# mo.vstack([
# func_metadata,
# mo.md("**Make sure to click the checkboxes before filling in descriptions and tags or they will reset.**"),
# schema_metadata
# ],
# align="center",
# gap=2
# )
fm = mo.vstack([
func_metadata,
],
align="center",
gap=2
)
sc_m = mo.vstack([
schema_metadata,
mo.md("**Make sure to select the checkbox options before filling in descriptions and tags or they will reset.**")
],
align="center",
gap=2
)
return (
description_input,
fm,
fnc_nm,
func_metadata,
sc_m,
schema_metadata,
software_spec,
tags_editor,
uploaded_function_name,
)
@app.cell
def _(json, mo, template_variant):
if template_variant.value == "Stream Files to IBM COS [Example]":
from cos_stream_schema_examples import input_schema, output_schema, sample_input
else:
input_schema = [
{
'id': '1',
'type': 'struct',
'fields': [
{
'name': '<variable name 1>',
'type': 'string',
'nullable': False,
'metadata': {}
},
{
'name': '<variable name 2>',
'type': 'string',
'nullable': False,
'metadata': {}
}
]
}
]
output_schema = [
{
'id': '1',
'type': 'struct',
'fields': [
{
'name': '<output return name>',
'type': 'string',
'nullable': False,
'metadata': {}
}
]
}
]
sample_input = {
'input_data': [
{
'fields': ['<variable name 1>', '<variable name 2>'],
'values': [
['<sample input value for variable 1>', '<sample input value for variable 2>']
]
}
]
}
input_schema_editor = mo.ui.code_editor(value=json.dumps(input_schema, indent=4), language="python", min_height=25)
output_schema_editor = mo.ui.code_editor(value=json.dumps(output_schema, indent=4), language="python", min_height=25)
sample_input_editor = mo.ui.code_editor(value=json.dumps(sample_input, indent=4), language="python", min_height=25)
schema_editors = mo.accordion(
{
"""**Input Schema Metadata Editor**""": input_schema_editor,
"""**Output Schema Metadata Editor**""": output_schema_editor,
"""**Sample Input Metadata Editor**""": sample_input_editor
}, multiple=True
)
# schema_editors
return (
input_schema,
input_schema_editor,
output_schema,
output_schema_editor,
sample_input,
sample_input_editor,
schema_editors,
)
@app.cell
def _(
ast,
deployment_client,
description_input,
function_editor,
input_schema_checkbox,
input_schema_editor,
json,
mo,
os,
output_schema_checkbox,
output_schema_editor,
sample_input_checkbox,
sample_input_editor,
selection_table,
software_spec,
tags_editor,
uploaded_function_name,
):
get_upload_status, set_upload_status = mo.state("No uploads yet")
function_meta = {}
if selection_table.value['ID'].iloc[0] and deployment_client is not None:
# Start with the base required fields
function_meta = {
deployment_client.repository.FunctionMetaNames.NAME: f"{uploaded_function_name.value}" or "your_function_name",
deployment_client.repository.FunctionMetaNames.SOFTWARE_SPEC_ID: software_spec or "45f12dfe-aa78-5b8d-9f38-0ee223c47309"
}
# Add optional fields if they exist
if tags_editor.value:
# Filter out empty strings from the tags list
filtered_tags = [tag for tag in tags_editor.value if tag and tag.strip()]
if filtered_tags: # Only add if there are non-empty tags
function_meta[deployment_client.repository.FunctionMetaNames.TAGS] = filtered_tags
if description_input.value:
function_meta[deployment_client.repository.FunctionMetaNames.DESCRIPTION] = description_input.value
# Add input schema if checkbox is checked
if input_schema_checkbox.value:
try:
function_meta[deployment_client.repository.FunctionMetaNames.INPUT_DATA_SCHEMAS] = json.loads(input_schema_editor.value)
except json.JSONDecodeError:
# If JSON parsing fails, try Python literal evaluation as fallback
function_meta[deployment_client.repository.FunctionMetaNames.INPUT_DATA_SCHEMAS] = ast.literal_eval(input_schema_editor.value)
# Add output schema if checkbox is checked
if output_schema_checkbox.value:
try:
function_meta[deployment_client.repository.FunctionMetaNames.OUTPUT_DATA_SCHEMAS] = json.loads(output_schema_editor.value)
except json.JSONDecodeError:
# If JSON parsing fails, try Python literal evaluation as fallback
function_meta[deployment_client.repository.FunctionMetaNames.OUTPUT_DATA_SCHEMAS] = ast.literal_eval(output_schema_editor.value)
# Add sample input if checkbox is checked
if sample_input_checkbox.value:
try:
function_meta[deployment_client.repository.FunctionMetaNames.SAMPLE_SCORING_INPUT] = json.loads(sample_input_editor.value)
except json.JSONDecodeError:
# If JSON parsing fails, try Python literal evaluation as fallback
function_meta[deployment_client.repository.FunctionMetaNames.SAMPLE_SCORING_INPUT] = ast.literal_eval(sample_input_editor.value)
def upload_function(function_meta, use_function_object=True):
"""
Uploads a Python function to watsonx.ai as a deployable asset.
Parameters:
function_meta (dict): Metadata for the function
use_function_object (bool): Whether to use function object (True) or file path (False)
Returns:
dict: Details of the uploaded function
"""
# Store the original working directory
original_dir = os.getcwd()
try:
# Create temp file from the code in the editor
code_to_deploy = function_editor.value['editor']
# This function is defined elsewhere in the notebook
func_name = uploaded_function_name.value or "your_function_name"
# Ensure function_meta has the correct function name
function_meta[deployment_client.repository.FunctionMetaNames.NAME] = func_name
# Save the file locally first
save_dir = "/tmp/notebook_functions"
os.makedirs(save_dir, exist_ok=True)
file_path = f"{save_dir}/{func_name}.py"
with open(file_path, "w", encoding="utf-8") as f:
f.write(code_to_deploy)
if use_function_object:
# Import the function from the file
import sys
import importlib.util
# Add the directory to Python's path
sys.path.append(save_dir)
# Import the module
spec = importlib.util.spec_from_file_location(func_name, file_path)
module = importlib.util.module_from_spec(spec)
spec.loader.exec_module(module)
# Get the function object
function_object = getattr(module, func_name)
# Change to /tmp directory before calling IBM Watson SDK functions
os.chdir('/tmp')
# Upload the function object
mo.md(f"Uploading function object: {func_name}")
func_details = deployment_client.repository.store_function(function_object, function_meta)
else:
# Change to /tmp directory before calling IBM Watson SDK functions
os.chdir('/tmp')
# Upload using the file path approach
mo.md(f"Uploading function from file: {file_path}")
func_details = deployment_client.repository.store_function(file_path, function_meta)
set_upload_status(f"Latest Upload - id - {func_details['metadata']['id']}")
return func_details
except Exception as e:
set_upload_status(f"Error uploading function: {str(e)}")
mo.md(f"Detailed error: {str(e)}")
raise
finally:
# Always change back to the original directory, even if an exception occurs
os.chdir(original_dir)
upload_status = mo.state("No uploads yet")
upload_button = mo.ui.button(
label="Upload Function",
on_click=lambda _: upload_function(function_meta, use_function_object=True),
kind="success",
tooltip="Click to upload function to watsonx.ai"
)
# function_meta
return (
filtered_tags,
function_meta,
get_upload_status,
set_upload_status,
upload_button,
upload_function,
upload_status,
)
@app.cell
def _(get_upload_status, mo, upload_button):
# Upload your function
if upload_button.value:
try:
upload_result = upload_button.value
artifact_id = upload_result['metadata']['id']
except Exception as e:
mo.md(f"Error: {str(e)}")
upload_func = mo.vstack([
upload_button,
mo.md(f"**Status:** {get_upload_status()}")
], justify="space-around", align="center")
return artifact_id, upload_func, upload_result
@app.cell
def _(deployment_client, mo, pd, upload_button, uuid):
def reorder_hardware_specifications(df):
"""
Reorders a hardware specifications dataframe by type and size of environment
without hardcoding specific hardware types.
Parameters:
df (pandas.DataFrame): The hardware specifications dataframe to reorder
Returns:
pandas.DataFrame: Reordered dataframe with reset index
"""
# Create a copy to avoid modifying the original dataframe
result_df = df.copy()
# Define a function to extract the base type and size
def get_sort_key(name):
# Create a custom ordering list
custom_order = [
"XXS", "XS", "S", "M", "L", "XL",
"XS-Spark", "S-Spark", "M-Spark", "L-Spark", "XL-Spark",
"K80", "K80x2", "K80x4",
"V100", "V100x2",
"WXaaS-XS", "WXaaS-S", "WXaaS-M", "WXaaS-L", "WXaaS-XL",
"Default Spark", "Notebook Default Spark", "ML"
]
# If name is in the custom order list, use its index
if name in custom_order:
return (0, custom_order.index(name))
# For any name not in the custom order, put it at the end
return (1, name)
# Add a temporary column for sorting
result_df['sort_key'] = result_df['NAME'].apply(get_sort_key)
# Sort the dataframe and drop the temporary column
result_df = result_df.sort_values('sort_key').drop('sort_key', axis=1)
# Reset the index
result_df = result_df.reset_index(drop=True)
return result_df
if deployment_client and upload_button.value:
hardware_specs = deployment_client.hardware_specifications.list()
hardware_specs_df = reorder_hardware_specifications(hardware_specs)
# Create a table with single-row selection
hw_selection_table = mo.ui.table(
hardware_specs_df,
selection="single", # Only allow selecting one row
label="#### **Select a supported hardware_specification for your deployment** *(Default: 'XS' - 1vCPU_4GB Ram)*",
initial_selection=[1],
page_size=6,
wrapped_columns=['DESCRIPTION']
)
deployment_type = mo.ui.radio(
options={"Function":"Online (Function Endpoint)","Runnable Job":"Batch (Runnable Jobs)"}, value="Function", label="Select the Type of Deployment:", inline=True
)
uuid_suffix = str(uuid.uuid4())[:4]
deployment_name = mo.ui.text(value=f"deployed_func_{uuid_suffix}", label="Deployment Name:", placeholder="<Must be completely unique>")
else:
hw_df = pd.DataFrame(
data=[["ID", "Activate deployment_client."]],
columns=["ID", "VALUE"]
)
hw_selection_table = mo.ui.table(
hw_df,
selection="single", # Only allow selecting one row
label="You haven't activated the Deployment_Client",
initial_selection=[0]
)
# mo.md(f"""
# <br>
# <br>
# {upload_func}
# <br>
# <br>
# ---
# {hw_selection_table}
# <br>
# <br>
# """)
return (
deployment_name,
deployment_type,
hardware_specs,
hardware_specs_df,
hw_df,
hw_selection_table,
reorder_hardware_specifications,
uuid_suffix,
)
@app.cell
def _(
artifact_id,
deployment_client,
deployment_details,
deployment_name,
deployment_type,
hw_selection_table,
mo,
print,
upload_button,
):
def deploy_function(artifact_id, deployment_type):
"""
Deploys a function asset to watsonx.ai.
Parameters:
artifact_id (str): ID of the function artifact to deploy
deployment_type (object): Type of deployment (online or batch)
Returns:
dict: Details of the deployed function
"""
if not artifact_id:
print("Error: No artifact ID provided. Please upload a function first.")
return None
if deployment_type.value == "Online (Function Endpoint)": # Changed from "Online (Function Endpoint)"
deployment_props = {
deployment_client.deployments.ConfigurationMetaNames.NAME: deployment_name.value,
deployment_client.deployments.ConfigurationMetaNames.ONLINE: {},
deployment_client.deployments.ConfigurationMetaNames.HARDWARE_SPEC: {"id": selected_hw_config},
deployment_client.deployments.ConfigurationMetaNames.SERVING_NAME: deployment_name.value,
}
else: # "Runnable Job" instead of "Batch (Runnable Jobs)"
deployment_props = {
deployment_client.deployments.ConfigurationMetaNames.NAME: deployment_name.value,
deployment_client.deployments.ConfigurationMetaNames.BATCH: {},
deployment_client.deployments.ConfigurationMetaNames.HARDWARE_SPEC: {"id": selected_hw_config},
# batch does not use serving names
}
try:
print(deployment_props)
# First, get the asset details to confirm it exists
asset_details = deployment_client.repository.get_details(artifact_id)
print(f"Asset found: {asset_details['metadata']['name']} with ID: {asset_details['metadata']['id']}")
# Create the deployment
deployed_function = deployment_client.deployments.create(artifact_id, deployment_props)
print(f"Creating deployment from Asset: {artifact_id} with deployment properties {str(deployment_props)}")
return deployed_function
except Exception as e:
print(f"Deployment error: {str(e)}")
return None
def get_deployment_id(deployed_function):
deployment_id = deployment_client.deployments.get_uid(deployment_details)
return deployment_id
def get_deployment_info(deployment_id):
deployment_info = deployment_client.deployments.get_details(deployment_id)
return deployment_info
deployment_status = mo.state("No deployments yet")
if hw_selection_table.value['ID'].iloc[0]:
selected_hw_config = hw_selection_table.value['ID'].iloc[0]
deploy_button = mo.ui.button(
label="Deploy Function",
on_click=lambda _: deploy_function(artifact_id, deployment_type),
kind="success",
tooltip="Click to deploy function to watsonx.ai"
)
if deployment_client and upload_button.value:
deployment_definition = mo.hstack([
deployment_type,
deployment_name
], justify="space-around")
else:
deployment_definition = mo.hstack([
"No Deployment Type Selected",
"No Deployment Name Provided"
], justify="space-around")
# deployment_definition
return (
deploy_button,
deploy_function,
deployment_definition,
deployment_status,
get_deployment_id,
get_deployment_info,
selected_hw_config,
)
@app.cell
def _(deploy_button, deployment_definition, mo):
_ = deployment_definition
deploy_fnc = mo.vstack([
deploy_button,
deploy_button.value
], justify="space-around", align="center")
# mo.md(f"""
# {deployment_definition}
# <br>
# <br>
# {deploy_fnc}
# ---
# """)
return (deploy_fnc,)
@app.cell(hide_code=True)
def _(deployment_client, mo):
### Functions to List , Get ID's as a list and Purge of Assets
def get_deployment_list():
deployment_df = deployment_client.deployments.list()
return deployment_df
def get_deployment_ids(df):
dep_list = df['ID'].tolist()
return dep_list
def get_data_assets_list():
data_assets_df = deployment_client.data_assets.list()
return data_assets_df
def get_data_asset_ids(df):
data_asset_list = df['ASSET_ID'].tolist()
return data_asset_list
### List Repository Assets, Get ID's as a list and Purge Repository Assets (AI Services, Functions, Models, etc.)
def get_repository_list():
repository_df = deployment_client.repository.list()
return repository_df
def get_repository_ids(df):
repository_list = df['ID'].tolist()
return repository_list
def delete_with_progress(ids_list, delete_function, item_type="items"):
"""
Generic wrapper that adds a progress bar to any deletion function
Parameters:
ids_list: List of IDs to delete
delete_function: Function that deletes a single ID
item_type: String describing what's being deleted (for display)
"""
with mo.status.progress_bar(
total=len(ids_list) or 1,
title=f"Purging {item_type}",
subtitle=f"Deleting {item_type}...",
completion_title="Purge Complete",
completion_subtitle=f"Successfully deleted {len(ids_list)} {item_type}"
) as progress:
for item_id in ids_list:
delete_function(item_id)
progress.update(increment=1)
return f"Deleted {len(ids_list)} {item_type} successfully"
# Use with existing deletion functions
def delete_deployments(deployment_ids):
return delete_with_progress(
deployment_ids,
lambda id: deployment_client.deployments.delete(id),
"deployments"
)
def delete_data_assets(data_asset_ids):
return delete_with_progress(
data_asset_ids,
lambda id: deployment_client.data_assets.delete(id),
"data assets"
)
def delete_repository_items(repository_ids):
return delete_with_progress(
repository_ids,
lambda id: deployment_client.repository.delete(id),
"repository items"
)
return (
delete_data_assets,
delete_deployments,
delete_repository_items,
delete_with_progress,
get_data_asset_ids,
get_data_assets_list,
get_deployment_ids,
get_deployment_list,
get_repository_ids,
get_repository_list,
)
@app.cell
def _(get_deployment_id_list, get_deployments_button, mo, purge_deployments):
deployments_purge_stack = mo.hstack([get_deployments_button, get_deployment_id_list, purge_deployments])
deployments_purge_stack_results = mo.vstack([get_deployments_button.value, get_deployment_id_list.value, purge_deployments.value])
deployments_purge_tab = mo.vstack([deployments_purge_stack, deployments_purge_stack_results])
return (
deployments_purge_stack,
deployments_purge_stack_results,
deployments_purge_tab,
)
@app.cell
def _(get_repository_button, get_repository_id_list, mo, purge_repository):
repository_purge_stack = mo.hstack([get_repository_button, get_repository_id_list, purge_repository])
repository_purge_stack_results = mo.vstack([get_repository_button.value, get_repository_id_list.value, purge_repository.value])
repository_purge_tab = mo.vstack([repository_purge_stack, repository_purge_stack_results])
return (
repository_purge_stack,
repository_purge_stack_results,
repository_purge_tab,
)
@app.cell
def _(get_data_asset_id_list, get_data_assets_button, mo, purge_data_assets):
data_assets_purge_stack = mo.hstack([get_data_assets_button, get_data_asset_id_list, purge_data_assets])
data_assets_purge_stack_results = mo.vstack([get_data_assets_button.value, get_data_asset_id_list.value, purge_data_assets.value])
data_assets_purge_tab = mo.vstack([data_assets_purge_stack, data_assets_purge_stack_results])
return (
data_assets_purge_stack,
data_assets_purge_stack_results,
data_assets_purge_tab,
)
@app.cell
def _(data_assets_purge_tab, deployments_purge_tab, mo, repository_purge_tab):
purge_tabs = mo.ui.tabs(
{"Purge Deployments": deployments_purge_tab, "Purge Repository Assets": repository_purge_tab,"Purge Data Assets": data_assets_purge_tab }, lazy=False
)
# asset_purge = mo.accordion(
# {
# """<br>
# #### **Supporting Cleanup Functionality, lists of different assets and purge them if needed** *(purges all detected)*
# <br>""": purge_tabs,
# }
# )
# asset_purge
return (purge_tabs,)
@app.cell(hide_code=True)
def _(
delete_data_assets,
delete_deployments,
delete_repository_items,
get_data_asset_ids,
get_data_assets_list,
get_deployment_ids,
get_deployment_list,
get_repository_ids,
get_repository_list,
mo,
):
### Temporary Function Purge - Assets
get_data_assets_button = mo.ui.button(
label="Get Data Assets Dataframe",
on_click=lambda _: get_data_assets_list(),
kind="neutral",
)
get_data_asset_id_list = mo.ui.button(
label="Turn Dataframe into List of IDs",
on_click=lambda _: get_data_asset_ids(get_data_assets_button.value),
kind="neutral",
)
purge_data_assets = mo.ui.button(
label="Purge Data Assets",
on_click=lambda _: delete_data_assets(get_data_asset_id_list.value),
kind="danger",
)
### Temporary Function Purge - Deployments
get_deployments_button = mo.ui.button(
label="Get Deployments Dataframe",
on_click=lambda _: get_deployment_list(),
kind="neutral",
)
get_deployment_id_list = mo.ui.button(
label="Turn Dataframe into List of IDs",
on_click=lambda _: get_deployment_ids(get_deployments_button.value),
kind="neutral",
)
purge_deployments = mo.ui.button(
label="Purge Deployments",
on_click=lambda _: delete_deployments(get_deployment_id_list.value),
kind="danger",
)
### Repository Items Purge
get_repository_button = mo.ui.button(
label="Get Repository Dataframe",
on_click=lambda _: get_repository_list(),
kind="neutral",
)
get_repository_id_list = mo.ui.button(
label="Turn Dataframe into List of IDs",
on_click=lambda _: get_repository_ids(get_repository_button.value),
kind="neutral",
)
purge_repository = mo.ui.button(
label="Purge Repository Items",
on_click=lambda _: delete_repository_items(get_repository_id_list.value),
kind="danger",
)
return (
get_data_asset_id_list,
get_data_assets_button,
get_deployment_id_list,
get_deployments_button,
get_repository_button,
get_repository_id_list,
purge_data_assets,
purge_deployments,
purge_repository,
)
if __name__ == "__main__":
app.run()
|