Spaces:
Sleeping
Sleeping
Upload app.py
Browse files
app.py
ADDED
@@ -0,0 +1,549 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from dotenv import load_dotenv
|
3 |
+
|
4 |
+
import json
|
5 |
+
import pandas as pd
|
6 |
+
|
7 |
+
import zipfile
|
8 |
+
import xml.etree.ElementTree as ET
|
9 |
+
from io import BytesIO
|
10 |
+
|
11 |
+
from openai import OpenAI
|
12 |
+
|
13 |
+
import re
|
14 |
+
|
15 |
+
import logging
|
16 |
+
|
17 |
+
load_dotenv()
|
18 |
+
HF_API_KEY = os.getenv("HF_API_KEY")
|
19 |
+
|
20 |
+
# Configure logging to write to 'zaoju_logs.log' without using pickle
|
21 |
+
logging.basicConfig(
|
22 |
+
filename='extract_po_logs.log',
|
23 |
+
level=logging.INFO,
|
24 |
+
format='%(asctime)s - %(levelname)s - %(message)s',
|
25 |
+
encoding='utf-8'
|
26 |
+
)
|
27 |
+
|
28 |
+
# Default Word XML namespace
|
29 |
+
DEFAULT_NS = {'w': 'http://schemas.openxmlformats.org/wordprocessingml/2006/main'}
|
30 |
+
NS = None # Global variable to store the namespace
|
31 |
+
|
32 |
+
def get_namespace(root):
|
33 |
+
"""Extracts the primary namespace from the XML root element while keeping the default."""
|
34 |
+
global NS
|
35 |
+
|
36 |
+
if NS is None:
|
37 |
+
ns = root.tag.split('}')[0].strip('{')
|
38 |
+
NS = {'w': ns} if ns else DEFAULT_NS
|
39 |
+
return NS
|
40 |
+
|
41 |
+
# --- Helper Functions for DOCX Processing ---
|
42 |
+
|
43 |
+
def extract_text_from_cell(cell):
|
44 |
+
"""Extracts text from a Word table cell, preserving line breaks and reconstructing split words."""
|
45 |
+
paragraphs = cell.findall('.//w:p', NS)
|
46 |
+
lines = []
|
47 |
+
|
48 |
+
for paragraph in paragraphs:
|
49 |
+
# Get all text runs and concatenate their contents
|
50 |
+
text_runs = [t.text for t in paragraph.findall('.//w:t', NS) if t.text]
|
51 |
+
line = ''.join(text_runs).strip() # Merge split words properly
|
52 |
+
|
53 |
+
if line: # Add only non-empty lines
|
54 |
+
lines.append(line)
|
55 |
+
|
56 |
+
return lines # Return list of lines to preserve line breaks
|
57 |
+
|
58 |
+
def clean_spaces(text):
|
59 |
+
"""
|
60 |
+
Removes excessive spaces between Chinese characters while preserving spaces in English words.
|
61 |
+
"""
|
62 |
+
# Remove spaces **between** Chinese characters but keep English spaces
|
63 |
+
text = re.sub(r'([\u4e00-\u9fff])\s+([\u4e00-\u9fff])', r'\1\2', text)
|
64 |
+
return text.strip()
|
65 |
+
|
66 |
+
def extract_key_value_pairs(text, target_dict=None):
|
67 |
+
"""
|
68 |
+
Extracts multiple key-value pairs from a given text.
|
69 |
+
- First, split by more than 3 spaces (`\s{3,}`) **only if the next segment contains a `:`.**
|
70 |
+
- Then, process each segment by splitting at `:` to correctly assign keys and values.
|
71 |
+
"""
|
72 |
+
if target_dict is None:
|
73 |
+
target_dict = {}
|
74 |
+
|
75 |
+
text = text.replace(":", ":") # Normalize Chinese colons to English colons
|
76 |
+
|
77 |
+
# Step 1: Check if splitting by more than 3 spaces is necessary
|
78 |
+
segments = re.split(r'(\s{3,})', text) # Use raw string to prevent invalid escape sequence
|
79 |
+
|
80 |
+
# Step 2: Process each segment, ensuring we only split if the next part has a `:`
|
81 |
+
merged_segments = []
|
82 |
+
temp_segment = ""
|
83 |
+
|
84 |
+
for segment in segments:
|
85 |
+
if ":" in segment: # If segment contains `:`, it's a valid split point
|
86 |
+
if temp_segment:
|
87 |
+
merged_segments.append(temp_segment.strip())
|
88 |
+
temp_segment = ""
|
89 |
+
merged_segments.append(segment.strip())
|
90 |
+
else:
|
91 |
+
temp_segment += " " + segment.strip()
|
92 |
+
|
93 |
+
if temp_segment:
|
94 |
+
merged_segments.append(temp_segment.strip())
|
95 |
+
|
96 |
+
# Step 3: Extract key-value pairs correctly
|
97 |
+
for segment in merged_segments:
|
98 |
+
if ':' in segment:
|
99 |
+
key, value = segment.split(':', 1) # Only split at the first colon
|
100 |
+
key, value = key.strip(), value.strip() # Clean spaces
|
101 |
+
|
102 |
+
if key in target_dict:
|
103 |
+
target_dict[key] += "\n" + value # Append if key already exists
|
104 |
+
else:
|
105 |
+
target_dict[key] = value
|
106 |
+
|
107 |
+
return target_dict
|
108 |
+
|
109 |
+
# --- Table Processing Functions ---
|
110 |
+
|
111 |
+
def process_single_column_table(rows):
|
112 |
+
"""Processes a single-column table and returns the extracted lines as a list."""
|
113 |
+
single_column_data = []
|
114 |
+
|
115 |
+
for row in rows:
|
116 |
+
cells = row.findall('.//w:tc', NS)
|
117 |
+
if len(cells) == 1:
|
118 |
+
cell_lines = extract_text_from_cell(cells[0]) # Extract all lines from the cell
|
119 |
+
|
120 |
+
# Append each line directly to the list without splitting
|
121 |
+
single_column_data.extend(cell_lines)
|
122 |
+
|
123 |
+
return single_column_data # Return the list of extracted lines
|
124 |
+
|
125 |
+
def process_buyer_seller_table(rows):
|
126 |
+
"""Processes a two-column buyer-seller table into a structured dictionary using the first row as keys."""
|
127 |
+
headers = [extract_text_from_cell(cell) for cell in rows[0].findall('.//w:tc', NS)]
|
128 |
+
if len(headers) != 2:
|
129 |
+
return None # Not a buyer-seller table
|
130 |
+
|
131 |
+
# determine role based on header text
|
132 |
+
def get_role(header_text, default_role):
|
133 |
+
header_text = header_text.lower() # Convert to lowercase
|
134 |
+
if '买方' in header_text or 'buyer' in header_text or '甲方' in header_text:
|
135 |
+
return 'buyer_info'
|
136 |
+
elif '卖方' in header_text or 'seller' in header_text or '乙方' in header_text:
|
137 |
+
return 'seller_info'
|
138 |
+
else:
|
139 |
+
return default_role # Default if no keyword is found
|
140 |
+
|
141 |
+
# Determine the keys for buyer and seller columns
|
142 |
+
buyer_key = get_role(headers[0][0], 'buyer_info')
|
143 |
+
seller_key = get_role(headers[1][0], 'seller_info')
|
144 |
+
|
145 |
+
# Initialize the dictionary using the determined keys
|
146 |
+
buyer_seller_data = {
|
147 |
+
buyer_key: {},
|
148 |
+
seller_key: {}
|
149 |
+
}
|
150 |
+
|
151 |
+
for row in rows:
|
152 |
+
cells = row.findall('.//w:tc', NS)
|
153 |
+
if len(cells) == 2:
|
154 |
+
buyer_lines = extract_text_from_cell(cells[0])
|
155 |
+
seller_lines = extract_text_from_cell(cells[1])
|
156 |
+
|
157 |
+
for line in buyer_lines:
|
158 |
+
extract_key_value_pairs(line, buyer_seller_data[buyer_key])
|
159 |
+
|
160 |
+
for line in seller_lines:
|
161 |
+
extract_key_value_pairs(line, buyer_seller_data[seller_key])
|
162 |
+
|
163 |
+
return buyer_seller_data
|
164 |
+
|
165 |
+
def process_summary_table(rows):
|
166 |
+
"""Processes a two-column summary table where keys are extracted as dictionary keys."""
|
167 |
+
extracted_data = []
|
168 |
+
|
169 |
+
for row in rows:
|
170 |
+
cells = row.findall('.//w:tc', NS)
|
171 |
+
if len(cells) == 2:
|
172 |
+
key = " ".join(extract_text_from_cell(cells[0]))
|
173 |
+
value = " ".join(extract_text_from_cell(cells[1]))
|
174 |
+
extracted_data.append({key: value})
|
175 |
+
|
176 |
+
return extracted_data
|
177 |
+
|
178 |
+
def extract_headers(first_row_cells):
|
179 |
+
"""Extracts unique column headers from the first row of a table."""
|
180 |
+
headers = []
|
181 |
+
header_count = {}
|
182 |
+
for cell in first_row_cells:
|
183 |
+
cell_text = " ".join(extract_text_from_cell(cell))
|
184 |
+
grid_span = cell.find('.//w:gridSpan', NS)
|
185 |
+
col_span = int(grid_span.attrib.get(f'{{{NS["w"]}}}val', '1')) if grid_span is not None else 1
|
186 |
+
for _ in range(col_span):
|
187 |
+
# Ensure header uniqueness by appending an index if repeated
|
188 |
+
if cell_text in header_count:
|
189 |
+
header_count[cell_text] += 1
|
190 |
+
unique_header = f"{cell_text}_{header_count[cell_text]}"
|
191 |
+
else:
|
192 |
+
header_count[cell_text] = 1
|
193 |
+
unique_header = cell_text
|
194 |
+
headers.append(unique_header if unique_header else f"Column_{len(headers) + 1}")
|
195 |
+
return headers
|
196 |
+
|
197 |
+
def process_long_table(rows):
|
198 |
+
"""Processes a standard table and correctly handles horizontally merged cells."""
|
199 |
+
if not rows:
|
200 |
+
return [] # Avoid IndexError
|
201 |
+
|
202 |
+
headers = extract_headers(rows[0].findall('.//w:tc', NS))
|
203 |
+
table_data = []
|
204 |
+
vertical_merge_tracker = {}
|
205 |
+
|
206 |
+
for row in rows[1:]:
|
207 |
+
row_data = {}
|
208 |
+
cells = row.findall('.//w:tc', NS)
|
209 |
+
running_index = 0
|
210 |
+
|
211 |
+
for cell in cells:
|
212 |
+
cell_text = " ".join(extract_text_from_cell(cell))
|
213 |
+
|
214 |
+
# Consistent Namespace Handling for Horizontal Merge
|
215 |
+
grid_span = cell.find('.//w:gridSpan', NS)
|
216 |
+
grid_span_val = grid_span.attrib.get(f'{{{NS["w"]}}}val') if grid_span is not None else '1'
|
217 |
+
col_span = int(grid_span_val)
|
218 |
+
|
219 |
+
# Handle vertical merge
|
220 |
+
v_merge = cell.find('.//w:vMerge', NS)
|
221 |
+
if v_merge is not None:
|
222 |
+
v_merge_val = v_merge.attrib.get(f'{{{NS["w"]}}}val')
|
223 |
+
if v_merge_val == 'restart':
|
224 |
+
vertical_merge_tracker[running_index] = cell_text
|
225 |
+
else:
|
226 |
+
# Repeat the value from the previous row's merged cell
|
227 |
+
cell_text = vertical_merge_tracker.get(running_index, "")
|
228 |
+
|
229 |
+
# Repeat the value for horizontally merged cells
|
230 |
+
start_col = running_index
|
231 |
+
end_col = running_index + col_span
|
232 |
+
|
233 |
+
# Repeat the value for each spanned column
|
234 |
+
for col in range(start_col, end_col):
|
235 |
+
key = headers[col] if col < len(headers) else f"Column_{col+1}"
|
236 |
+
row_data[key] = cell_text
|
237 |
+
|
238 |
+
# Update the running index to the end of the merged cell
|
239 |
+
running_index = end_col
|
240 |
+
|
241 |
+
# Fill remaining columns with empty strings to maintain alignment
|
242 |
+
while running_index < len(headers):
|
243 |
+
row_data[headers[running_index]] = ""
|
244 |
+
running_index += 1
|
245 |
+
|
246 |
+
table_data.append(row_data)
|
247 |
+
|
248 |
+
return table_data
|
249 |
+
|
250 |
+
def extract_tables(root):
|
251 |
+
"""Extracts tables from the DOCX document and returns structured data."""
|
252 |
+
tables = root.findall('.//w:tbl', NS)
|
253 |
+
table_data = {}
|
254 |
+
table_paragraphs = set()
|
255 |
+
|
256 |
+
for table_index, table in enumerate(tables, start=1):
|
257 |
+
rows = table.findall('.//w:tr', NS)
|
258 |
+
if not rows:
|
259 |
+
continue # Skip empty tables
|
260 |
+
|
261 |
+
for paragraph in table.findall('.//w:p', NS):
|
262 |
+
table_paragraphs.add(paragraph)
|
263 |
+
|
264 |
+
first_row_cells = rows[0].findall('.//w:tc', NS)
|
265 |
+
num_columns = len(first_row_cells)
|
266 |
+
|
267 |
+
if num_columns == 1:
|
268 |
+
single_column_data = process_single_column_table(rows)
|
269 |
+
if single_column_data:
|
270 |
+
table_data[f"table_{table_index}_single_column"] = single_column_data
|
271 |
+
continue # Skip further processing for this table
|
272 |
+
|
273 |
+
summary_start_index = None
|
274 |
+
for i, row in enumerate(rows):
|
275 |
+
if len(row.findall('.//w:tc', NS)) == 2:
|
276 |
+
summary_start_index = i
|
277 |
+
break
|
278 |
+
|
279 |
+
long_table_data = []
|
280 |
+
summary_data = []
|
281 |
+
|
282 |
+
if summary_start_index is not None and summary_start_index > 0:
|
283 |
+
long_table_data = process_long_table(rows[:summary_start_index])
|
284 |
+
elif summary_start_index is None:
|
285 |
+
long_table_data = process_long_table(rows)
|
286 |
+
|
287 |
+
if summary_start_index is not None:
|
288 |
+
is_buyer_seller_table = all(len(row.findall('.//w:tc', NS)) == 2 for row in rows)
|
289 |
+
if is_buyer_seller_table:
|
290 |
+
buyer_seller_data = process_buyer_seller_table(rows)
|
291 |
+
if buyer_seller_data:
|
292 |
+
table_data[f"table_{table_index}_buyer_seller"] = buyer_seller_data
|
293 |
+
else:
|
294 |
+
summary_data = process_summary_table(rows[summary_start_index:])
|
295 |
+
|
296 |
+
if long_table_data:
|
297 |
+
table_data[f"long_table_{table_index}"] = long_table_data
|
298 |
+
if summary_data:
|
299 |
+
table_data[f"long_table_{table_index}_summary"] = summary_data
|
300 |
+
|
301 |
+
return table_data, table_paragraphs
|
302 |
+
|
303 |
+
# --- Non-Table Processing Functions ---
|
304 |
+
|
305 |
+
def extract_text_outside_tables(root, table_paragraphs):
|
306 |
+
"""Extracts text from paragraphs outside tables in the document."""
|
307 |
+
extracted_text = []
|
308 |
+
|
309 |
+
# print(ET.tostring(root, encoding='unicode'))
|
310 |
+
for paragraph in root.findall('.//w:p', NS):
|
311 |
+
if paragraph in table_paragraphs:
|
312 |
+
continue # Skip paragraphs inside tables
|
313 |
+
|
314 |
+
texts = [t.text.strip() for t in paragraph.findall('.//w:t', NS) if t.text]
|
315 |
+
line = clean_spaces(' '.join(texts).replace(';', '').replace(';','').replace(':',':')) # Remove semicolons and clean spaces
|
316 |
+
|
317 |
+
if ':' in line:
|
318 |
+
extracted_text.append(line)
|
319 |
+
|
320 |
+
return extracted_text
|
321 |
+
|
322 |
+
# --- Main Extraction Functions ---
|
323 |
+
|
324 |
+
def extract_docx_as_xml(file_bytes, save_xml=False, xml_filename="document.xml"):
|
325 |
+
|
326 |
+
# Ensure file_bytes is at the start position
|
327 |
+
file_bytes.seek(0)
|
328 |
+
|
329 |
+
with zipfile.ZipFile(file_bytes, 'r') as docx:
|
330 |
+
with docx.open('word/document.xml') as xml_file:
|
331 |
+
xml_content = xml_file.read().decode('utf-8')
|
332 |
+
if save_xml:
|
333 |
+
with open(xml_filename, "w", encoding="utf-8") as f:
|
334 |
+
f.write(xml_content)
|
335 |
+
return xml_content
|
336 |
+
|
337 |
+
def xml_to_json(xml_content, save_json=False, json_filename="extracted_data.json"):
|
338 |
+
|
339 |
+
tree = ET.ElementTree(ET.fromstring(xml_content))
|
340 |
+
root = tree.getroot()
|
341 |
+
|
342 |
+
table_data, table_paragraphs = extract_tables(root)
|
343 |
+
extracted_data = table_data
|
344 |
+
extracted_data["non_table_data"] = extract_text_outside_tables(root, table_paragraphs)
|
345 |
+
|
346 |
+
if save_json:
|
347 |
+
with open(json_filename, "w", encoding="utf-8") as f:
|
348 |
+
json.dump(extracted_data, f, ensure_ascii=False, indent=4)
|
349 |
+
|
350 |
+
return json.dumps(extracted_data, ensure_ascii=False, indent=4)
|
351 |
+
|
352 |
+
def deepseek_extract_contract_summary(json_data, save_json=False):
|
353 |
+
"""Sends extracted JSON data to OpenAI and returns formatted structured JSON."""
|
354 |
+
|
355 |
+
# Step 1: Convert JSON string to Python dictionary
|
356 |
+
contract_data = json.loads(json_data)
|
357 |
+
|
358 |
+
# Step 2: Remove keys that contain "long_table"
|
359 |
+
filtered_contract_data = {key: value for key, value in contract_data.items() if "long_table" not in key}
|
360 |
+
|
361 |
+
# Step 3: Convert back to JSON string (if needed)
|
362 |
+
json_output = json.dumps(filtered_contract_data, ensure_ascii=False, indent=4)
|
363 |
+
|
364 |
+
prompt = """You are given a contract in JSON format. Extract the following information:
|
365 |
+
|
366 |
+
# Response Format
|
367 |
+
Return the extracted information as a structured JSON in the exact format shown below (Do not repeat any keys):
|
368 |
+
|
369 |
+
{
|
370 |
+
"合同编号":
|
371 |
+
"采购经办人":
|
372 |
+
"接收人":
|
373 |
+
"Recipient":
|
374 |
+
"接收地":
|
375 |
+
"Place of receipt":
|
376 |
+
"供应商":
|
377 |
+
"币种":
|
378 |
+
"合同日期":
|
379 |
+
"供货日期":
|
380 |
+
}
|
381 |
+
|
382 |
+
Contract data in JSON format:""" + f"""
|
383 |
+
{json_output}"""
|
384 |
+
|
385 |
+
messages = [
|
386 |
+
{
|
387 |
+
"role": "user",
|
388 |
+
"content": prompt
|
389 |
+
}
|
390 |
+
]
|
391 |
+
|
392 |
+
client = OpenAI(
|
393 |
+
base_url="https://router.huggingface.co/novita",
|
394 |
+
api_key=HF_API_KEY,
|
395 |
+
)
|
396 |
+
|
397 |
+
completion = client.chat.completions.create(
|
398 |
+
model="deepseek/deepseek-r1-distill-qwen-14b",
|
399 |
+
messages=messages,
|
400 |
+
)
|
401 |
+
|
402 |
+
contract_summary = re.sub(r"<think>.*?</think>\s*", "", completion.choices[0].message.content, flags=re.DOTALL) # Remove think
|
403 |
+
|
404 |
+
contract_summary = re.sub(r"^```json\n|```$", "", contract_summary, flags=re.DOTALL) # Remove ```
|
405 |
+
|
406 |
+
if save_json:
|
407 |
+
with open("extracted_contract_summary.json", "w", encoding="utf-8") as f:
|
408 |
+
f.write(contract_summary)
|
409 |
+
|
410 |
+
return json.dumps(contract_summary, ensure_ascii=False, indent=4)
|
411 |
+
|
412 |
+
def deepseek_extract_price_list(json_data):
|
413 |
+
"""Sends extracted JSON data to OpenAI and returns formatted structured JSON."""
|
414 |
+
|
415 |
+
# Step 1: Convert JSON string to Python dictionary
|
416 |
+
contract_data = json.loads(json_data)
|
417 |
+
|
418 |
+
# Step 2: Remove keys that contain "long_table"
|
419 |
+
filtered_contract_data = {key: value for key, value in contract_data.items() if "long_table" in key}
|
420 |
+
|
421 |
+
# Step 3: Convert back to JSON string (if needed)
|
422 |
+
json_output = json.dumps(filtered_contract_data, ensure_ascii=False, indent=4)
|
423 |
+
|
424 |
+
print(json_output)
|
425 |
+
|
426 |
+
prompt = """You are given a price list in JSON format. Extract the following information in CSV format:
|
427 |
+
|
428 |
+
# Response Format
|
429 |
+
Return the extracted information as a CSV in the exact format shown below:
|
430 |
+
|
431 |
+
物料名称, 物料名称(英文), 物料规格, 采购数量, 单位, 单价, 计划号
|
432 |
+
|
433 |
+
JSON data:""" + f"""
|
434 |
+
{json_output}"""
|
435 |
+
|
436 |
+
messages = [
|
437 |
+
{
|
438 |
+
"role": "user",
|
439 |
+
"content": prompt
|
440 |
+
}
|
441 |
+
]
|
442 |
+
|
443 |
+
client = OpenAI(
|
444 |
+
base_url="https://router.huggingface.co/novita",
|
445 |
+
api_key=HF_API_KEY,
|
446 |
+
)
|
447 |
+
|
448 |
+
completion = client.chat.completions.create(
|
449 |
+
model="deepseek/deepseek-r1-distill-qwen-14b",
|
450 |
+
messages=messages,
|
451 |
+
)
|
452 |
+
|
453 |
+
price_list = re.sub(r"<think>.*?</think>\s*", "", completion.choices[0].message.content, flags=re.DOTALL)
|
454 |
+
|
455 |
+
price_list = re.sub(r"^```json\n|```$", "", price_list, flags=re.DOTALL)
|
456 |
+
|
457 |
+
print(price_list)
|
458 |
+
|
459 |
+
def json_to_excel(contract_summary, json_data, excel_path):
|
460 |
+
"""Converts extracted JSON tables to an Excel file."""
|
461 |
+
|
462 |
+
# Correctly parse the JSON string
|
463 |
+
contract_summary_json = json.loads(json.loads(contract_summary))
|
464 |
+
|
465 |
+
print(contract_summary_json)
|
466 |
+
|
467 |
+
contract_summary_df = pd.DataFrame([contract_summary_json])
|
468 |
+
|
469 |
+
# Ensure json_data is a dictionary
|
470 |
+
if isinstance(json_data, str):
|
471 |
+
json_data = json.loads(json_data)
|
472 |
+
|
473 |
+
long_tables = [pd.DataFrame(table) for key, table in json_data.items() if "long_table" in key and "summary" not in key]
|
474 |
+
long_table = long_tables[-1] if long_tables else pd.DataFrame()
|
475 |
+
|
476 |
+
with pd.ExcelWriter(excel_path) as writer:
|
477 |
+
contract_summary_df.to_excel(writer, sheet_name="Contract Summary", index=False)
|
478 |
+
long_table.to_excel(writer, sheet_name="Price List", index=False)
|
479 |
+
|
480 |
+
#--- Extract PO ------------------------------
|
481 |
+
|
482 |
+
def extract_po(docx_path):
|
483 |
+
"""Processes a single .docx file, extracts tables, formats with OpenAI, and saves as an Excel file."""
|
484 |
+
if not os.path.exists(docx_path) or not docx_path.endswith(".docx"):
|
485 |
+
print(f"Invalid file: {docx_path}")
|
486 |
+
return
|
487 |
+
|
488 |
+
# Read the .docx file as bytes
|
489 |
+
with open(docx_path, "rb") as f:
|
490 |
+
docx_bytes = BytesIO(f.read())
|
491 |
+
|
492 |
+
# Step 1: Extract XML content from DOCX
|
493 |
+
print("Extracting Docs data to XML...")
|
494 |
+
xml_file = extract_docx_as_xml(docx_bytes,save_xml=True)
|
495 |
+
|
496 |
+
get_namespace(ET.fromstring(xml_file))
|
497 |
+
|
498 |
+
# Step 2: Extract tables from DOCX and save JSON
|
499 |
+
print("Extracting XML data to JSON...")
|
500 |
+
extracted_data = xml_to_json(xml_file, save_json=True)
|
501 |
+
|
502 |
+
# Step 2: Process JSON with OpenAI to get structured output
|
503 |
+
print("Processing JSON data with AI...")
|
504 |
+
contract_summary = deepseek_extract_contract_summary(extracted_data, save_json=True)
|
505 |
+
|
506 |
+
# Step 3: Save formatted data as Excel
|
507 |
+
print("Converting AI Generated JSON to Excel...")
|
508 |
+
excel_output_path = os.path.splitext(docx_path)[0] + ".xlsx"
|
509 |
+
json_to_excel(contract_summary, extracted_data, excel_output_path)
|
510 |
+
|
511 |
+
print(f"Excel file saved at: {excel_output_path}")
|
512 |
+
|
513 |
+
|
514 |
+
# Logging
|
515 |
+
log = f"""Results:
|
516 |
+
|
517 |
+
Contract Summary: {contract_summary},
|
518 |
+
|
519 |
+
RAW Extracted Data: {extracted_data},
|
520 |
+
|
521 |
+
XML Preview: {xml_file[:1000]}"""
|
522 |
+
|
523 |
+
print(log)
|
524 |
+
|
525 |
+
logging.info(f"""{log}""")
|
526 |
+
|
527 |
+
|
528 |
+
return excel_output_path
|
529 |
+
|
530 |
+
# Example Usage
|
531 |
+
|
532 |
+
# extract_po("test-contract-converted.docx")
|
533 |
+
# extract_po("test-contract.docx")
|
534 |
+
|
535 |
+
# Gradio Interface ------------------------------
|
536 |
+
|
537 |
+
import gradio as gr
|
538 |
+
from gradio.themes.base import Base
|
539 |
+
|
540 |
+
interface = gr.Interface(
|
541 |
+
fn=extract_po,
|
542 |
+
title="PO Extractor 买卖合同数据提取",
|
543 |
+
inputs=gr.File(label="买卖合同 (.docx)"),
|
544 |
+
outputs=gr.File(label="数据提取结果 (.xlsx)"),
|
545 |
+
allow_flagging="never",
|
546 |
+
theme=Base()
|
547 |
+
)
|
548 |
+
|
549 |
+
interface.launch()
|