Spaces:
Build error
Build error
File size: 7,311 Bytes
49f1653 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 |
from pdfminer.high_level import extract_text
from pdf2image import convert_from_path # Convert PDF pages to images
import base64
import io
import os
from PIL import Image
import json
from openai import OpenAI
from dotenv import load_dotenv
import gradio as gr
load_dotenv()
client = OpenAI()
# Function to encode image to Base64
def encode_image(image_input):
"""
Encode an image to Base64.
Supports both file paths (str) and in-memory PIL images.
"""
if isinstance(image_input, str): # If input is a file path
with open(image_input, "rb") as image_file:
return base64.b64encode(image_file.read()).decode("utf-8")
elif isinstance(image_input, Image.Image): # If input is a PIL image
buffered = io.BytesIO()
image_input.save(buffered, format="JPEG")
return base64.b64encode(buffered.getvalue()).decode("utf-8")
else:
raise ValueError("Unsupported input type. Provide a file path or a PIL image.")
# Function to process image files
def process_image(image_path):
print(f"πΌοΈ Processing image file: {image_path}")
image_base64 = encode_image(image_path)
image_url = f"data:image/jpeg;base64,{image_base64}"
response = client.chat.completions.create(
model="gpt-4o",
messages=[
{
"role": "user",
"content": [
{"type": "text", "text": "Extract all text from this image."},
{"type": "image_url", "image_url": {"url": image_url}},
],
}
],
)
extracted_text = response.choices[0].message.content.strip()
# print(f"π Extracted text: {extracted_text}")
return extracted_text
# Function to process text-based PDFs
def process_text_pdf(pdf_path):
text_content = extract_text(pdf_path).strip()
if text_content:
print(f"π Extracting text from PDF: {pdf_path}")
return text_content
return None # No text found, fallback to image processing
# Function to process scanned PDFs (image-based)
def process_image_pdf(pdf_path):
print(f"πΌοΈ No text found! Processing as an image-based (scanned) PDF: {pdf_path}")
images = convert_from_path(pdf_path)
extracted_text = []
for i, image in enumerate(images):
image_text = process_image(image)
extracted_text.append(image_text)
return "\n\n".join(extracted_text)
# Function to detect file type and extract text accordingly
def process_file(file_path):
if not os.path.exists(file_path):
print(f"β Error: File not found: {file_path}")
return None
file_extension = file_path.lower().split(".")[-1]
if file_extension in ["jpg", "jpeg", "png"]:
return process_image(file_path) # Process images
elif file_extension == "pdf":
text_data = process_text_pdf(file_path)
if text_data: # If text extraction succeeds, return it
return text_data
return process_image_pdf(file_path) # Otherwise, process as image
else:
print(f"β Unsupported file type: {file_path}")
return None
def extract_certificate_details(certificate_path):
certificate_text = process_file(certificate_path)
print(f"πΌοΈ Extracting details from certificate: {certificate_path}")
if not certificate_text:
print(f"β Error: Certificate text could not be extracted from {certificate_path}")
return None
# Ask GPT-4o to extract the details
response = client.chat.completions.create(
model="gpt-4o",
response_format={ "type": "json_object" },
seed=123,
temperature=0,
messages=[
{
"role": "developer",
"content": f"""Extract the following details from the certificate text in JSON format, leave blank if not found:
{{
"Certificate Name": "",
"Certificate ID": "",
"Ship Name": "",
"Date of Issue": "",
"Expiration Date": ""
}}
Certificate Text:
{certificate_text}
"""
}
],
)
result = response.choices[0].message.content
result_json = json.loads(result) # Parse the result as JSON
certificate_name = result_json.get("Certificate Name", "")
certificate_id = result_json.get("Certificate ID", "")
ship_name = result_json.get("Ship Name", "")
date_of_issue = result_json.get("Date of Issue", "")
expiration_date = result_json.get("Expiration Date", "")
print(f"β
Extracted details:\n- Certificate Name: {certificate_name}\n- Certificate ID: {certificate_id}\n- Ship Name: {ship_name}\n- Date of Issue: {date_of_issue}\n- Expiration Date: {expiration_date}")
return {
"Certificate Name": certificate_name,
"Certificate ID": certificate_id,
"Ship Name": ship_name,
"Date of Issue": date_of_issue,
"Expiration Date": expiration_date,
"Certificate Text": certificate_text
}
# Function to compare two certificates using AI
def compare_certificates(new_cert_details, old_cert_details):
# Ask GPT-4o to compare the texts
response = client.chat.completions.create(
model="gpt-4o",
messages=[
{
"role": "user",
"content": f"""Compare the two certificates below and provide a structured summary highlighting key differences in the format below:
### Comparison Summary:
- Identify differences in terms of:
- Certificate ID
- Date of Issue
- Expiration Date
- Highlight any changes in other key details, if applicable.
### Take Note:
- Clearly structure the output for easy reading
- Do not include any structural changes in the text, only content changes
### Old Certificate:
{old_cert_details}
### New Certificate:
{new_cert_details}"""
}
],
)
comparison_result = response.choices[0].message.content.strip()
return comparison_result
def gradio_process_certificate(certificate, old_cert_details=""):
# Process the certificate
cert_details = extract_certificate_details(certificate)
if not cert_details:
return "β Failed to extract certificate details."
# If old_certificate is provided, compare the certificates
if old_cert_details:
print(f"π Comparing certificates")
# Compare the certificates
comparison_result = compare_certificates(cert_details, old_cert_details)
# Return both certificate details and comparison result
return {
"new_certificate": cert_details,
"old_certificate": old_cert_details,
"comparison": comparison_result
}
# If only one certificate is provided, return just its details
return cert_details
# Launch Gradio UI
gr.Interface(
fn=gradio_process_certificate,
inputs=[
gr.File(label="Certificate (PDF or Image)"),
gr.Textbox(label="Old Certificate Details (JSON) - Optional")
],
outputs=gr.JSON(label="Certificate Details"),
title="π Certificate Details Extractor",
description="Upload a certificate to extract details, or upload two certificates to compare them.",
show_progress='full',
allow_flagging="never"
).launch() |