File size: 10,798 Bytes
ab10305
 
 
 
 
 
 
 
 
 
e29b31c
 
 
ab10305
 
 
 
 
 
 
 
e29b31c
ab10305
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e29b31c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ab10305
 
 
 
 
 
 
e29b31c
ab10305
e29b31c
 
 
 
 
 
 
 
ab10305
 
 
 
 
e29b31c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ab10305
 
 
 
 
 
 
 
 
 
 
 
 
 
e29b31c
 
 
 
 
 
ab10305
 
 
 
 
 
 
 
 
 
 
 
e29b31c
ab10305
 
e29b31c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ab10305
e29b31c
ab10305
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
import dash
from dash import dcc, html, Input, Output, State, callback
import dash_bootstrap_components as dbc
import base64
import io
import pandas as pd
import openai
import os
import time
from dash.exceptions import PreventUpdate
import PyPDF2
import docx
import chardet

# Initialize the Dash app
app = dash.Dash(__name__, external_stylesheets=[dbc.themes.BOOTSTRAP])

# Get OpenAI API key from Hugging Face Spaces environment variable
openai.api_key = os.environ.get('OPENAI_API_KEY')

# Global variables
uploaded_files = {}
current_matrix = None
matrix_type = None

# Matrix types and their descriptions
matrix_types = {
    "Communications Plan Matrix": "Create a matrix showing stakeholders, communication methods, frequency, and responsibilities.",
    "Project Kick-off Matrix": "Generate a matrix outlining key project details, goals, team roles, and initial timelines.",
    "Decision Matrix": "Develop a matrix for evaluating options against criteria, with weighted scores.",
    "Lessons Learned Matrix": "Create a matrix capturing project experiences, challenges, solutions, and recommendations.",
    "Key Performance Indicator Matrix": "Generate a matrix of KPIs, their targets, actual performance, and status.",
    "Prioritization Matrix": "Develop a matrix for ranking tasks or features based on importance and urgency.",
    "Risk Matrix": "Create a matrix assessing potential risks, their likelihood, impact, and mitigation strategies.",
    "RACI Matrix": "Generate a matrix showing team members and their roles (Responsible, Accountable, Consulted, Informed) for each task.",
    "Project Schedule Matrix": "Develop a matrix showing project phases, tasks, durations, and dependencies.",
    "Quality Control Matrix": "Create a matrix outlining quality standards, testing methods, and acceptance criteria.",
    "Requirements Traceability Matrix": "Generate a matrix linking requirements to their sources, test cases, and status.",
    "Sprint Planning Matrix": "Develop a matrix for sprint tasks, story points, assignees, and status.",
    "Test Traceability Matrix": "Create a matrix linking test cases to requirements, execution status, and results.",
    "Sprint Backlog": "Generate a matrix of user stories, tasks, estimates, and priorities for the sprint.",
    "Sprint Retrospective": "Develop a matrix capturing what went well, what didn't, and action items from the sprint.",
    "SWOT Matrix": "Create a matrix analyzing Strengths, Weaknesses, Opportunities, and Threats."
}

# Layout
app.layout = dbc.Container([
    dbc.Row([
        dbc.Col([
            html.H4("Project Artifacts", className="mt-3 mb-4"),
            dcc.Upload(
                id='upload-files',
                children=html.Div([
                    'Drag and Drop or ',
                    html.A('Select Files')
                ]),
                style={
                    'width': '100%',
                    'height': '60px',
                    'lineHeight': '60px',
                    'borderWidth': '1px',
                    'borderStyle': 'dashed',
                    'borderRadius': '5px',
                    'textAlign': 'center',
                    'margin': '10px 0'
                },
                multiple=True
            ),
            html.Div(id='file-list'),
            html.Hr(),
            html.Div([
                dbc.Button(
                    matrix_type,
                    id=f'btn-{matrix_type.lower().replace(" ", "-")}',
                    color="primary",
                    className="mb-2 w-100",
                    style={'overflow': 'hidden', 'text-overflow': 'ellipsis', 'white-space': 'nowrap'}
                ) for matrix_type in matrix_types.keys()
            ])
        ], width=3),
        dbc.Col([
            html.Div(id='matrix-preview', className="border p-3 mb-3"),
            dcc.Loading(
                id="loading-indicator",
                type="dot",
                children=[html.Div(id="loading-output")]
            ),
            dbc.Button("Download Matrix", id="btn-download", color="success", className="mt-3"),
            dcc.Download(id="download-matrix"),
            html.Hr(),
            dbc.Input(id="chat-input", type="text", placeholder="Chat with GPT to update matrix...", className="mb-2"),
            dbc.Button("Send", id="btn-send-chat", color="primary", className="mb-3"),
            html.Div(id="chat-output")
        ], width=9)
    ])
], fluid=True)

def parse_file_content(contents, filename):
    content_type, content_string = contents.split(',')
    decoded = base64.b64decode(content_string)
    try:
        if filename.endswith('.pdf'):
            with io.BytesIO(decoded) as pdf_file:
                reader = PyPDF2.PdfReader(pdf_file)
                return ' '.join([page.extract_text() for page in reader.pages])
        elif filename.endswith('.docx'):
            with io.BytesIO(decoded) as docx_file:
                doc = docx.Document(docx_file)
                return ' '.join([para.text for para in doc.paragraphs])
        elif filename.endswith('.txt') or filename.endswith('.rtf'):
            encoding = chardet.detect(decoded)['encoding']
            return decoded.decode(encoding)
        else:
            return "Unsupported file format"
    except Exception as e:
        print(f"Error processing file {filename}: {str(e)}")
        return "Error processing file"

@app.callback(
    Output('file-list', 'children'),
    Input('upload-files', 'contents'),
    State('upload-files', 'filename'),
    State('file-list', 'children')
)
def update_output(list_of_contents, list_of_names, existing_files):
    global uploaded_files
    if list_of_contents is not None:
        new_files = []
        for i, (content, name) in enumerate(zip(list_of_contents, list_of_names)):
            file_content = parse_file_content(content, name)
            uploaded_files[name] = file_content
            new_files.append(html.Div([
                html.Button('×', id={'type': 'remove-file', 'index': name}, style={'marginRight': '5px', 'fontSize': '10px'}),
                html.Span(name)
            ]))
        if existing_files is None:
            existing_files = []
        return existing_files + new_files
    return existing_files

@app.callback(
    Output('file-list', 'children', allow_duplicate=True),
    Input({'type': 'remove-file', 'index': dash.ALL}, 'n_clicks'),
    State('file-list', 'children'),
    prevent_initial_call=True
)
def remove_file(n_clicks, existing_files):
    global uploaded_files
    ctx = dash.callback_context
    if not ctx.triggered:
        raise PreventUpdate
    removed_file = ctx.triggered[0]['prop_id'].split(',')[0].split(':')[-1].strip('}')
    uploaded_files.pop(removed_file, None)
    return [file for file in existing_files if file['props']['children'][1]['props']['children'] != removed_file]

def generate_matrix_with_gpt(matrix_type, file_contents):
    prompt = f"Generate a {matrix_type} based on the following project artifacts:\n\n"
    prompt += "\n\n".join(file_contents)
    prompt += f"\n\nCreate a {matrix_type} in a format that can be represented as a pandas DataFrame."

    response = openai.ChatCompletion.create(
        model="gpt-3.5-turbo",
        messages=[
            {"role": "system", "content": "You are a helpful assistant that generates project management matrices."},
            {"role": "user", "content": prompt}
        ]
    )

    matrix_text = response.choices[0].message.content
    # Parse the matrix_text into a pandas DataFrame
    # This is a simplified parsing, you might need to adjust based on the actual output format
    lines = matrix_text.strip().split('\n')
    headers = lines[0].split('|')
    data = [line.split('|') for line in lines[2:]]
    return pd.DataFrame(data, columns=headers)

@app.callback(
    Output('matrix-preview', 'children'),
    Output('loading-output', 'children'),
    [Input(f'btn-{matrix_type.lower().replace(" ", "-")}', 'n_clicks') for matrix_type in matrix_types.keys()],
    prevent_initial_call=True
)
def generate_matrix(*args):
    global current_matrix, matrix_type
    ctx = dash.callback_context
    if not ctx.triggered:
        raise PreventUpdate
    button_id = ctx.triggered[0]['prop_id'].split('.')[0]
    matrix_type = button_id.replace('btn-', '').replace('-', ' ').title()
    
    if not uploaded_files:
        return html.Div("Please upload project artifacts before generating a matrix."), ""

    file_contents = list(uploaded_files.values())
    
    current_matrix = generate_matrix_with_gpt(matrix_type, file_contents)
    
    return dbc.Table.from_dataframe(current_matrix, striped=True, bordered=True, hover=True), f"{matrix_type} generated"

@app.callback(
    Output('chat-output', 'children'),
    Output('matrix-preview', 'children', allow_duplicate=True),
    Input('btn-send-chat', 'n_clicks'),
    State('chat-input', 'value'),
    prevent_initial_call=True
)
def update_matrix_via_chat(n_clicks, chat_input):
    global current_matrix
    if not chat_input or current_matrix is None:
        raise PreventUpdate
    
    prompt = f"Update the following {matrix_type} based on this instruction: {chat_input}\n\n"
    prompt += current_matrix.to_string()
    
    response = openai.ChatCompletion.create(
        model="gpt-3.5-turbo",
        messages=[
            {"role": "system", "content": "You are a helpful assistant that updates project management matrices."},
            {"role": "user", "content": prompt}
        ]
    )

    updated_matrix_text = response.choices[0].message.content
    # Parse the updated_matrix_text into a pandas DataFrame
    # This is a simplified parsing, you might need to adjust based on the actual output format
    lines = updated_matrix_text.strip().split('\n')
    headers = lines[0].split('|')
    data = [line.split('|') for line in lines[2:]]
    current_matrix = pd.DataFrame(data, columns=headers)
    
    return f"Matrix updated based on: {chat_input}", dbc.Table.from_dataframe(current_matrix, striped=True, bordered=True, hover=True)

@app.callback(
    Output("download-matrix", "data"),
    Input("btn-download", "n_clicks"),
    prevent_initial_call=True
)
def download_matrix(n_clicks):
    global current_matrix, matrix_type
    if current_matrix is None:
        raise PreventUpdate
    
    # Create an in-memory Excel file
    output = io.BytesIO()
    with pd.ExcelWriter(output, engine='xlsxwriter') as writer:
        current_matrix.to_excel(writer, sheet_name='Sheet1', index=False)
    
    return dcc.send_bytes(output.getvalue(), f"{matrix_type}.xlsx")

if __name__ == '__main__':
    print("Starting the Dash application...")
    app.run(debug=True, host='0.0.0.0', port=7860)
    print("Dash application has finished running.")