File size: 10,798 Bytes
ab10305 e29b31c ab10305 e29b31c ab10305 e29b31c ab10305 e29b31c ab10305 e29b31c ab10305 e29b31c ab10305 e29b31c ab10305 e29b31c ab10305 e29b31c ab10305 e29b31c ab10305 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 |
import dash
from dash import dcc, html, Input, Output, State, callback
import dash_bootstrap_components as dbc
import base64
import io
import pandas as pd
import openai
import os
import time
from dash.exceptions import PreventUpdate
import PyPDF2
import docx
import chardet
# Initialize the Dash app
app = dash.Dash(__name__, external_stylesheets=[dbc.themes.BOOTSTRAP])
# Get OpenAI API key from Hugging Face Spaces environment variable
openai.api_key = os.environ.get('OPENAI_API_KEY')
# Global variables
uploaded_files = {}
current_matrix = None
matrix_type = None
# Matrix types and their descriptions
matrix_types = {
"Communications Plan Matrix": "Create a matrix showing stakeholders, communication methods, frequency, and responsibilities.",
"Project Kick-off Matrix": "Generate a matrix outlining key project details, goals, team roles, and initial timelines.",
"Decision Matrix": "Develop a matrix for evaluating options against criteria, with weighted scores.",
"Lessons Learned Matrix": "Create a matrix capturing project experiences, challenges, solutions, and recommendations.",
"Key Performance Indicator Matrix": "Generate a matrix of KPIs, their targets, actual performance, and status.",
"Prioritization Matrix": "Develop a matrix for ranking tasks or features based on importance and urgency.",
"Risk Matrix": "Create a matrix assessing potential risks, their likelihood, impact, and mitigation strategies.",
"RACI Matrix": "Generate a matrix showing team members and their roles (Responsible, Accountable, Consulted, Informed) for each task.",
"Project Schedule Matrix": "Develop a matrix showing project phases, tasks, durations, and dependencies.",
"Quality Control Matrix": "Create a matrix outlining quality standards, testing methods, and acceptance criteria.",
"Requirements Traceability Matrix": "Generate a matrix linking requirements to their sources, test cases, and status.",
"Sprint Planning Matrix": "Develop a matrix for sprint tasks, story points, assignees, and status.",
"Test Traceability Matrix": "Create a matrix linking test cases to requirements, execution status, and results.",
"Sprint Backlog": "Generate a matrix of user stories, tasks, estimates, and priorities for the sprint.",
"Sprint Retrospective": "Develop a matrix capturing what went well, what didn't, and action items from the sprint.",
"SWOT Matrix": "Create a matrix analyzing Strengths, Weaknesses, Opportunities, and Threats."
}
# Layout
app.layout = dbc.Container([
dbc.Row([
dbc.Col([
html.H4("Project Artifacts", className="mt-3 mb-4"),
dcc.Upload(
id='upload-files',
children=html.Div([
'Drag and Drop or ',
html.A('Select Files')
]),
style={
'width': '100%',
'height': '60px',
'lineHeight': '60px',
'borderWidth': '1px',
'borderStyle': 'dashed',
'borderRadius': '5px',
'textAlign': 'center',
'margin': '10px 0'
},
multiple=True
),
html.Div(id='file-list'),
html.Hr(),
html.Div([
dbc.Button(
matrix_type,
id=f'btn-{matrix_type.lower().replace(" ", "-")}',
color="primary",
className="mb-2 w-100",
style={'overflow': 'hidden', 'text-overflow': 'ellipsis', 'white-space': 'nowrap'}
) for matrix_type in matrix_types.keys()
])
], width=3),
dbc.Col([
html.Div(id='matrix-preview', className="border p-3 mb-3"),
dcc.Loading(
id="loading-indicator",
type="dot",
children=[html.Div(id="loading-output")]
),
dbc.Button("Download Matrix", id="btn-download", color="success", className="mt-3"),
dcc.Download(id="download-matrix"),
html.Hr(),
dbc.Input(id="chat-input", type="text", placeholder="Chat with GPT to update matrix...", className="mb-2"),
dbc.Button("Send", id="btn-send-chat", color="primary", className="mb-3"),
html.Div(id="chat-output")
], width=9)
])
], fluid=True)
def parse_file_content(contents, filename):
content_type, content_string = contents.split(',')
decoded = base64.b64decode(content_string)
try:
if filename.endswith('.pdf'):
with io.BytesIO(decoded) as pdf_file:
reader = PyPDF2.PdfReader(pdf_file)
return ' '.join([page.extract_text() for page in reader.pages])
elif filename.endswith('.docx'):
with io.BytesIO(decoded) as docx_file:
doc = docx.Document(docx_file)
return ' '.join([para.text for para in doc.paragraphs])
elif filename.endswith('.txt') or filename.endswith('.rtf'):
encoding = chardet.detect(decoded)['encoding']
return decoded.decode(encoding)
else:
return "Unsupported file format"
except Exception as e:
print(f"Error processing file {filename}: {str(e)}")
return "Error processing file"
@app.callback(
Output('file-list', 'children'),
Input('upload-files', 'contents'),
State('upload-files', 'filename'),
State('file-list', 'children')
)
def update_output(list_of_contents, list_of_names, existing_files):
global uploaded_files
if list_of_contents is not None:
new_files = []
for i, (content, name) in enumerate(zip(list_of_contents, list_of_names)):
file_content = parse_file_content(content, name)
uploaded_files[name] = file_content
new_files.append(html.Div([
html.Button('×', id={'type': 'remove-file', 'index': name}, style={'marginRight': '5px', 'fontSize': '10px'}),
html.Span(name)
]))
if existing_files is None:
existing_files = []
return existing_files + new_files
return existing_files
@app.callback(
Output('file-list', 'children', allow_duplicate=True),
Input({'type': 'remove-file', 'index': dash.ALL}, 'n_clicks'),
State('file-list', 'children'),
prevent_initial_call=True
)
def remove_file(n_clicks, existing_files):
global uploaded_files
ctx = dash.callback_context
if not ctx.triggered:
raise PreventUpdate
removed_file = ctx.triggered[0]['prop_id'].split(',')[0].split(':')[-1].strip('}')
uploaded_files.pop(removed_file, None)
return [file for file in existing_files if file['props']['children'][1]['props']['children'] != removed_file]
def generate_matrix_with_gpt(matrix_type, file_contents):
prompt = f"Generate a {matrix_type} based on the following project artifacts:\n\n"
prompt += "\n\n".join(file_contents)
prompt += f"\n\nCreate a {matrix_type} in a format that can be represented as a pandas DataFrame."
response = openai.ChatCompletion.create(
model="gpt-3.5-turbo",
messages=[
{"role": "system", "content": "You are a helpful assistant that generates project management matrices."},
{"role": "user", "content": prompt}
]
)
matrix_text = response.choices[0].message.content
# Parse the matrix_text into a pandas DataFrame
# This is a simplified parsing, you might need to adjust based on the actual output format
lines = matrix_text.strip().split('\n')
headers = lines[0].split('|')
data = [line.split('|') for line in lines[2:]]
return pd.DataFrame(data, columns=headers)
@app.callback(
Output('matrix-preview', 'children'),
Output('loading-output', 'children'),
[Input(f'btn-{matrix_type.lower().replace(" ", "-")}', 'n_clicks') for matrix_type in matrix_types.keys()],
prevent_initial_call=True
)
def generate_matrix(*args):
global current_matrix, matrix_type
ctx = dash.callback_context
if not ctx.triggered:
raise PreventUpdate
button_id = ctx.triggered[0]['prop_id'].split('.')[0]
matrix_type = button_id.replace('btn-', '').replace('-', ' ').title()
if not uploaded_files:
return html.Div("Please upload project artifacts before generating a matrix."), ""
file_contents = list(uploaded_files.values())
current_matrix = generate_matrix_with_gpt(matrix_type, file_contents)
return dbc.Table.from_dataframe(current_matrix, striped=True, bordered=True, hover=True), f"{matrix_type} generated"
@app.callback(
Output('chat-output', 'children'),
Output('matrix-preview', 'children', allow_duplicate=True),
Input('btn-send-chat', 'n_clicks'),
State('chat-input', 'value'),
prevent_initial_call=True
)
def update_matrix_via_chat(n_clicks, chat_input):
global current_matrix
if not chat_input or current_matrix is None:
raise PreventUpdate
prompt = f"Update the following {matrix_type} based on this instruction: {chat_input}\n\n"
prompt += current_matrix.to_string()
response = openai.ChatCompletion.create(
model="gpt-3.5-turbo",
messages=[
{"role": "system", "content": "You are a helpful assistant that updates project management matrices."},
{"role": "user", "content": prompt}
]
)
updated_matrix_text = response.choices[0].message.content
# Parse the updated_matrix_text into a pandas DataFrame
# This is a simplified parsing, you might need to adjust based on the actual output format
lines = updated_matrix_text.strip().split('\n')
headers = lines[0].split('|')
data = [line.split('|') for line in lines[2:]]
current_matrix = pd.DataFrame(data, columns=headers)
return f"Matrix updated based on: {chat_input}", dbc.Table.from_dataframe(current_matrix, striped=True, bordered=True, hover=True)
@app.callback(
Output("download-matrix", "data"),
Input("btn-download", "n_clicks"),
prevent_initial_call=True
)
def download_matrix(n_clicks):
global current_matrix, matrix_type
if current_matrix is None:
raise PreventUpdate
# Create an in-memory Excel file
output = io.BytesIO()
with pd.ExcelWriter(output, engine='xlsxwriter') as writer:
current_matrix.to_excel(writer, sheet_name='Sheet1', index=False)
return dcc.send_bytes(output.getvalue(), f"{matrix_type}.xlsx")
if __name__ == '__main__':
print("Starting the Dash application...")
app.run(debug=True, host='0.0.0.0', port=7860)
print("Dash application has finished running.") |