File size: 12,943 Bytes
ab10305
 
 
 
 
 
 
 
 
 
e29b31c
 
 
ab10305
 
 
 
 
 
 
 
e29b31c
ab10305
 
 
 
 
e0af9ed
ab10305
 
b8f1b65
ab10305
79ae593
ab10305
79ae593
ab10305
 
b8f1b65
ab10305
79ae593
ab10305
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
685045c
ab10305
 
 
 
685045c
2b4bd58
 
685045c
ab10305
685045c
ab10305
 
685045c
ab10305
 
 
685045c
ab10305
f62109e
ab10305
 
 
685045c
803301e
 
 
f62109e
 
 
 
 
803301e
ab10305
685045c
ab10305
 
e29b31c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ab10305
 
 
 
 
 
 
e29b31c
ab10305
e29b31c
685045c
e29b31c
 
685045c
 
e29b31c
a0d2fac
685045c
 
edd7603
685045c
ab10305
e29b31c
 
 
 
 
 
 
 
 
15ca67d
e29b31c
685045c
e29b31c
685045c
 
e29b31c
ab4acd6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e29b31c
 
4032a87
e29b31c
d36650b
e29b31c
 
 
 
ab4acd6
 
 
 
fec5de2
ab4acd6
 
fec5de2
 
ab4acd6
e29b31c
 
ab10305
 
 
685045c
ab10305
 
685045c
b4a006c
 
 
 
685045c
 
8fb1aea
685045c
b4a006c
 
685045c
8fb1aea
b4a006c
685045c
b4a006c
 
 
 
bfda8d6
 
 
 
 
 
 
ab10305
 
bfda8d6
e29b31c
ab10305
 
ab4acd6
 
 
 
 
 
 
 
 
 
 
 
 
e29b31c
 
9a899bb
e29b31c
9b44b20
e29b31c
 
 
 
ab4acd6
bfda8d6
 
ab4acd6
bfda8d6
 
ab4acd6
bfda8d6
 
ab4acd6
e29b31c
ab10305
e29b31c
bfda8d6
ab10305
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e285981
ab10305
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
import dash
from dash import dcc, html, Input, Output, State, callback
import dash_bootstrap_components as dbc
import base64
import io
import pandas as pd
import openai
import os
import time
from dash.exceptions import PreventUpdate
import PyPDF2
import docx
import chardet

# Initialize the Dash app
app = dash.Dash(__name__, external_stylesheets=[dbc.themes.BOOTSTRAP])

# Get OpenAI API key from Hugging Face Spaces environment variable
openai.api_key = os.environ.get('OPENAI_API_KEY')

# Global variables
uploaded_files = {}
current_matrix = None
matrix_type = None

# Matrix types and their descriptions
matrix_types = {
    "Project Mangement Matrix": "Generate a project management matrix outlining all aspects of project management that summarizes components such as scope, schedule, budget, quality, resources, communications, risk, procurement, and stakeholder management.",
    "Communications Plan Matrix": "Create a matrix showing stakeholders, communication methods, frequency, and responsibilities.",
    "Project Kick-off Matrix": "Generate a matrix outlining key project details, goals, team roles, and initial timelines.",
    "Decision Matrix": "Develop a matrix for evaluating options against criteria, with weighted scores analysis of alternatives style.",
    "Lessons Learned Matrix": "Create a matrix capturing project experiences, challenges, solutions, and recommendations.",
    "Key Performance Indicator Matrix": "Generate a matrix of KPIs, their measurable targets, actual performance, and status.",
    "Prioritization Matrix": "Develop a matrix for ranking tasks or features based on importance and urgency.",
    "Risk Matrix": "Create a matrix identifying tasks with potential risks, their likelihood, impact, and mitigation strategies.",
    "RACI Matrix": "Generate a matrix showing team members and their roles (Responsible, Accountable, Consulted, Informed) for each task.",
    "Project Schedule Matrix": "Develop a matrix showing project phases, tasks, durations, and dependencies.",
    "Quality Control Matrix": "Create a matrix outlining measurable quality standards, testing methods, and acceptance criteria.",
    "Requirements Traceability Matrix": "Generate a matrix linking requirements to their sources, test cases, and status.",
    "Sprint Planning Matrix": "Develop a matrix for sprint nubmer, sprint tasks in that sprint number, story points, assignees, and status.",
    "Test Traceability Matrix": "Create a matrix linking test cases to requirements, execution status, and results.",
    "Sprint Backlog": "Generate a matrix of user stories, tasks, estimates, and priorities for the sprint.",
    "Sprint Retrospective": "Develop a matrix capturing what went well, what didn't, and action items from the sprint.",
    "SWOT Matrix": "Create a matrix analyzing Strengths, Weaknesses, Opportunities, and Threats."
}

app.layout = dbc.Container([
    dbc.Row([
        dbc.Col([
            html.H4("Project Artifacts", className="mt-3 mb-4"),
            dcc.Upload(
                id='upload-files',
                children=html.Div([
                    'Drag and Drop or ',
                    html.A('Select Files')
                ]),
                style={
                    'width': '100%',
                    'height': '60px',
                    'lineHeight': '60px',
                    'borderWidth': '1px',
                    'borderStyle': 'dashed',
                    'borderRadius': '5px',
                    'textAlign': 'center',
                    'margin': '10px 0'
                },
                multiple=True
            ),
            html.Div(id='file-list'),
            html.Hr(),
            html.Div([
                dbc.Button(
                    matrix_type,
                    id=f'btn-{matrix_type.lower().replace(" ", "-")}',
                    color="link",
                    className="mb-2 w-100 text-left custom-button",
                    style={'overflow': 'hidden', 'text-overflow': 'ellipsis', 'white-space': 'nowrap'}
                ) for matrix_type in matrix_types.keys()
            ])
        ], width=3),
        dbc.Col([
            html.Div(style={"height": "20px"}),  # Added small gap
            dcc.Loading(
                id="loading-indicator",
                type="dot",
                children=[html.Div(id="loading-output")]
            ),
            html.Div(id='matrix-preview', className="border p-3 mb-3"),
            dbc.Button("Download Matrix", id="btn-download", color="success", className="mt-3"),
            dcc.Download(id="download-matrix"),
            html.Hr(),
            html.Div(style={"height": "20px"}),  # Added small gap
            dcc.Loading(
                id="chat-loading",
                type="dot",
                children=[
                    dbc.Input(id="chat-input", type="text", placeholder="Chat with GPT to update matrix...", className="mb-2"),
                    dbc.Button("Send", id="btn-send-chat", color="primary", className="mb-3"),
                    html.Div(id="chat-output")
                ]
            )
        ], width=9)
    ])
], fluid=True)

def parse_file_content(contents, filename):
    content_type, content_string = contents.split(',')
    decoded = base64.b64decode(content_string)
    try:
        if filename.endswith('.pdf'):
            with io.BytesIO(decoded) as pdf_file:
                reader = PyPDF2.PdfReader(pdf_file)
                return ' '.join([page.extract_text() for page in reader.pages])
        elif filename.endswith('.docx'):
            with io.BytesIO(decoded) as docx_file:
                doc = docx.Document(docx_file)
                return ' '.join([para.text for para in doc.paragraphs])
        elif filename.endswith('.txt') or filename.endswith('.rtf'):
            encoding = chardet.detect(decoded)['encoding']
            return decoded.decode(encoding)
        else:
            return "Unsupported file format"
    except Exception as e:
        print(f"Error processing file {filename}: {str(e)}")
        return "Error processing file"

@app.callback(
    Output('file-list', 'children'),
    Input('upload-files', 'contents'),
    State('upload-files', 'filename'),
    State('file-list', 'children')
)
def update_output(list_of_contents, list_of_names, existing_files):
    global uploaded_files
    if list_of_contents is not None:
        new_files = []
        for i, (content, name) in enumerate(zip(list_of_contents, list_of_names)):
            file_content = parse_file_content(content, name)
            uploaded_files[name] = file_content
            new_files.append(html.Div([
                html.Button('×', id={'type': 'remove-file', 'index': name}, style={'marginRight': '5px', 'fontSize': '10px'}),
                html.Span(name)
            ]))
        if existing_files is None:
            existing_files = []
        return existing_files + new_files
    return existing_files

@app.callback(
    Output('file-list', 'children', allow_duplicate=True),
    Input({'type': 'remove-file', 'index': dash.ALL}, 'n_clicks'),
    State('file-list', 'children'),
    prevent_initial_call=True
)
def remove_file(n_clicks, existing_files):
    global uploaded_files
    ctx = dash.callback_context
    if not ctx.triggered:
        raise PreventUpdate
    removed_file = ctx.triggered[0]['prop_id'].split(',')[0].split(':')[-1].strip('}')
    uploaded_files.pop(removed_file, None)
    return [file for file in existing_files if file['props']['children'][1]['props']['children'] != removed_file]

def generate_matrix_with_gpt(matrix_type, file_contents):
    prompt = f"""Generate a {matrix_type} based on the following project artifacts:
{' '.join(file_contents)}
Instructions:
1. Create the {matrix_type} as a table.
2. Use ONLY pipe symbols (|) to separate columns.
3. Do NOT include any introductory text, descriptions, or explanations.
4. Do NOT use any dashes (-) or other formatting characters.
5. The first row should be the column headers.
6. Start the output immediately with the column headers.
7. Each subsequent row should represent a single item in the matrix.
Example format:
Header1|Header2|Header3
Item1A|Item1B|Item1C
Item2A|Item2B|Item2C
Now, generate the {matrix_type}:
"""

    response = openai.ChatCompletion.create(
        model="gpt-4-turbo",
        messages=[
            {"role": "system", "content": "You are a precise matrix generator that outputs only the requested matrix without any additional text. Based on the files uploaded, as the project manager you perform the analysis and make appropriate assumptions to populate the matrix like roles, tasks, timelines etc."},
            {"role": "user", "content": prompt}
        ]
    )

    matrix_text = response.choices[0].message.content.strip()
    print("Raw matrix text from GPT:", matrix_text)  # For debugging

    lines = [line.strip() for line in matrix_text.split('\n') if '|' in line]
    data = [line.split('|') for line in lines]
    data = [[cell.strip() for cell in row] for row in data]

    headers = data[0]
    data = data[1:]

    return pd.DataFrame(data, columns=headers)

@app.callback(
    Output('matrix-preview', 'children'),
    Output('loading-output', 'children'),
    [Input(f'btn-{matrix_type.lower().replace(" ", "-")}', 'n_clicks') for matrix_type in matrix_types.keys()],
    prevent_initial_call=True
)
def generate_matrix(*args):
    global current_matrix, matrix_type
    ctx = dash.callback_context
    if not ctx.triggered:
        raise PreventUpdate
    button_id = ctx.triggered[0]['prop_id'].split('.')[0]
    matrix_type = button_id.replace('btn-', '').replace('-', ' ').title()
    
    if not uploaded_files:
        return html.Div("Please upload project artifacts before generating a matrix."), ""

    file_contents = list(uploaded_files.values())
    
    try:
        current_matrix = generate_matrix_with_gpt(matrix_type, file_contents)
        return dbc.Table.from_dataframe(current_matrix, striped=True, bordered=True, hover=True), f"{matrix_type} generated"
    except Exception as e:
        print(f"Error generating matrix: {str(e)}")
        return html.Div(f"Error generating matrix: {str(e)}"), "Error"

@app.callback(
    Output('chat-output', 'children'),
    Output('matrix-preview', 'children', allow_duplicate=True),
    Input('btn-send-chat', 'n_clicks'),
    State('chat-input', 'value'),
    prevent_initial_call=True
)
def update_matrix_via_chat(n_clicks, chat_input):
    global current_matrix, matrix_type
    if not chat_input or current_matrix is None:
        raise PreventUpdate
    
    prompt = f"""Update the following {matrix_type} based on this instruction: {chat_input}
Current matrix:
{current_matrix.to_string(index=False)}
Instructions:
1. Provide ONLY the updated matrix as a table.
2. Use ONLY pipe symbols (|) to separate columns.
3. Do NOT include any introductory text, descriptions, or explanations.
4. Do NOT use any dashes (-) or other formatting characters.
5. The first row should be the column headers.
6. Start the output immediately with the column headers.
7. Each subsequent row should represent a single item in the matrix.
Now, provide the updated {matrix_type}:
"""
    
    response = openai.ChatCompletion.create(
        model="gpt-4-turbo",
        messages=[
            {"role": "system", "content": "You are a precise matrix updater that outputs only the requested matrix without any additional text. You will make assumptions as a project manager to produce the matrix based on the limited informaton provided"},
            {"role": "user", "content": prompt}
        ]
    )

    updated_matrix_text = response.choices[0].message.content.strip()
    print("Raw updated matrix text from GPT:", updated_matrix_text)  # For debugging

    lines = [line.strip() for line in updated_matrix_text.split('\n') if '|' in line]
    data = [line.split('|') for line in lines]
    data = [[cell.strip() for cell in row] for row in data]

    headers = data[0]
    data = data[1:]

    current_matrix = pd.DataFrame(data, columns=headers)
    
    return f"Matrix updated based on: {chat_input}", dbc.Table.from_dataframe(current_matrix, striped=True, bordered=True, hover=True)
    
@app.callback(
    Output("download-matrix", "data"),
    Input("btn-download", "n_clicks"),
    prevent_initial_call=True
)
def download_matrix(n_clicks):
    global current_matrix, matrix_type
    if current_matrix is None:
        raise PreventUpdate
    
    # Create an in-memory Excel file
    output = io.BytesIO()
    with pd.ExcelWriter(output, engine='xlsxwriter') as writer:
        current_matrix.to_excel(writer, sheet_name='Sheet1', index=False)
    
    return dcc.send_bytes(output.getvalue(), f"{matrix_type}.xlsx")

if __name__ == '__main__':
    print("Starting the Dash application...")
    app.run(debug=False, host='0.0.0.0', port=7860)
    print("Dash application has finished running.")