File size: 19,151 Bytes
ab10305 c5fd0c3 ab10305 c5fd0c3 ab10305 e29b31c ab10305 c5fd0c3 ab10305 c5fd0c3 ab10305 c5fd0c3 ab10305 cb596e9 ab10305 b8f1b65 ab10305 79ae593 ab10305 79ae593 ab10305 b8f1b65 ab10305 79ae593 ab10305 c5fd0c3 ab10305 c5fd0c3 ab10305 c5fd0c3 ab10305 c5fd0c3 685045c c5fd0c3 ab10305 c5fd0c3 e29b31c c5fd0c3 e29b31c c5fd0c3 e29b31c c5fd0c3 e29b31c 677c25b c5fd0c3 ab10305 c5fd0c3 ab10305 c5fd0c3 ab10305 c5fd0c3 ab10305 caa0c08 c5fd0c3 caa0c08 c5fd0c3 caa0c08 677c25b c5fd0c3 677c25b c5fd0c3 caa0c08 e29b31c ab4acd6 e29b31c 4032a87 e29b31c c5fd0c3 e29b31c ab4acd6 c5fd0c3 ab4acd6 fec5de2 ab4acd6 fec5de2 e29b31c bfda8d6 ab10305 c5fd0c3 ab10305 c5fd0c3 ab4acd6 c5fd0c3 ab4acd6 c5fd0c3 ab4acd6 ab10305 c5fd0c3 ab10305 c5fd0c3 ab10305 c5fd0c3 ab10305 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 |
import dash
from dash import dcc, html, Input, Output, State, callback, ALL
import dash_bootstrap_components as dbc
import base64
import io
import pandas as pd
import openai
import os
import time
import uuid
import threading
import tempfile
import shutil
import logging
from flask import request
from dash.exceptions import PreventUpdate
import PyPDF2
import docx
import chardet
# --- Logging Setup ---
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger("maiko_matrix_app")
# --- App and Session Setup ---
app = dash.Dash(__name__, external_stylesheets=[dbc.themes.BOOTSTRAP])
server = app.server
openai.api_key = os.environ.get('OPENAI_API_KEY')
# Session management globals
SESSION_DATA = {}
SESSION_LOCKS = {}
def get_session_id():
if 'session-id' in request.cookies:
return request.cookies['session-id']
# Generate new session id (uuid4) if not present
session_id = str(uuid.uuid4())
logger.info(f"Generated new session id: {session_id}")
return session_id
def get_session_data():
session_id = get_session_id()
if session_id not in SESSION_DATA:
SESSION_DATA[session_id] = {
'uploaded_files': {}, # filename -> temp file path
'file_texts': {}, # filename -> extracted text
'current_matrix': None,
'matrix_type': None,
'temp_dir': tempfile.mkdtemp(prefix=f"maiko_{session_id}_"),
}
SESSION_LOCKS[session_id] = threading.Lock()
return SESSION_DATA[session_id], SESSION_LOCKS[session_id]
def cleanup_session_tempdirs():
# Called optionally on server shutdown for cleanup
for sess in SESSION_DATA.values():
try:
shutil.rmtree(sess['temp_dir'])
except Exception as e:
logger.warning(f"Failed to cleanup tempdir: {e}")
matrix_types = {
"Project Deliverables Matrix": "Generate a project deliverables matrix all presumed and actual deliverables based on tasks, requirements and scope.",
"Communications Plan Matrix": "Create a matrix showing stakeholders, communication methods, frequency, and responsibilities.",
"Project Kick-off Matrix": "Generate a matrix outlining key project details, goals, team roles, and initial timelines.",
"Decision Matrix": "Develop a matrix for evaluating options against criteria, with weighted scores analysis of alternatives style.",
"Lessons Learned Matrix": "Create a matrix capturing project experiences, challenges, solutions, and recommendations.",
"Key Performance Indicator Matrix": "Generate a matrix of KPIs, their measurable targets, actual performance, and status.",
"Prioritization Matrix": "Develop a matrix for ranking tasks or features based on importance and urgency.",
"Risk Matrix": "Create a matrix identifying tasks with potential risks, their likelihood, impact, and mitigation strategies.",
"RACI Matrix": "Generate a matrix showing team members and their roles (Responsible, Accountable, Consulted, Informed) for each task.",
"Project Schedule Matrix": "Develop a matrix showing project phases, tasks, durations, and dependencies.",
"Quality Control Matrix": "Create a matrix outlining measurable quality standards, testing methods, and acceptance criteria.",
"Requirements Traceability Matrix": "Generate a matrix linking requirements to their sources, test cases, and status.",
"Sprint Planning Matrix": "Develop a matrix for sprint nubmer, sprint tasks in that sprint number, story points, assignees, and status.",
"Test Traceability Matrix": "Create a matrix linking test cases to requirements, execution status, and results.",
"Sprint Backlog": "Generate a matrix of user stories, tasks, estimates, and priorities for the sprint.",
"Sprint Retrospective": "Develop a matrix capturing what went well, what didn't, and action items from the sprint.",
"SWOT Matrix": "Create a matrix analyzing Strengths, Weaknesses, Opportunities, and Threats."
}
# --- UI Layout ---
app.layout = dbc.Container([
dbc.Row([
dbc.Col([
dbc.Card([
dbc.CardBody([
html.H4("Project Artifacts", className="mb-3 mt-1"),
dcc.Upload(
id='upload-files',
children=html.Div([
'Drag and Drop or ',
html.A('Select Files')
]),
style={
'width': '100%',
'height': '60px',
'lineHeight': '60px',
'borderWidth': '1px',
'borderStyle': 'dashed',
'borderRadius': '5px',
'textAlign': 'center',
'margin': '10px 0'
},
multiple=True
),
html.Div(id='file-list'),
html.Hr(),
html.Div([
dbc.Button(
matrix_label,
id={'type': 'matrix-btn', 'index': matrix_label},
color="link",
className="mb-2 w-100 text-left custom-button",
style={'overflow': 'hidden', 'text-overflow': 'ellipsis', 'white-space': 'nowrap'}
) for matrix_label in matrix_types.keys()
])
])
], className="mb-2")
], width=3, style={'minWidth': '260px', 'background': '#f8f9fa', 'height': '100vh', 'position': 'fixed', 'overflowY': 'auto'}),
dbc.Col([
dbc.Row([
dbc.Col([
html.H2("Maiko Project Matrix Generator", className="mb-3 mt-2")
])
]),
dbc.Row([
dbc.Col([
dbc.Card([
dbc.CardBody([
dcc.Loading(
id="loading",
type="default",
children=[
html.Div(id="loading-output"),
html.Div(id='matrix-preview', className="border p-3 mb-3"),
dbc.Button("Download Matrix", id="btn-download", color="success", className="mt-3"),
dcc.Download(id="download-matrix"),
]
)
])
])
])
]),
html.Hr(),
dbc.Row([
dbc.Col([
dbc.Card([
dbc.CardBody([
dcc.Loading(
id="chat-loading",
type="default",
children=[
dbc.Textarea(id="chat-input", placeholder="Chat with Maiko to update matrix...", className="mb-2", style={'width': '100%', 'wordWrap': 'break-word'}),
dbc.Button("Send", id="btn-send-chat", color="primary", className="mb-3"),
html.Div(id="chat-output")
]
)
])
])
])
])
], width=9, style={'marginLeft': '30%'})
])
], fluid=True, style={'padding': '0'})
# --- File Parsing ---
def parse_file_content(file_path, filename):
try:
with open(file_path, "rb") as f:
decoded = f.read()
if filename.endswith('.pdf'):
with io.BytesIO(decoded) as pdf_file:
reader = PyPDF2.PdfReader(pdf_file)
return ' '.join([page.extract_text() or "" for page in reader.pages])
elif filename.endswith('.docx'):
with io.BytesIO(decoded) as docx_file:
doc = docx.Document(docx_file)
return ' '.join([para.text for para in doc.paragraphs])
elif filename.endswith('.txt') or filename.endswith('.rtf'):
encoding = chardet.detect(decoded)['encoding']
return decoded.decode(encoding)
else:
return "Unsupported file format"
except Exception as e:
logger.exception(f"Error processing file {filename}: {str(e)}")
return "Error processing file"
def truncate_filename(filename, max_length=24):
if len(filename) <= max_length:
return filename
else:
return filename[:max_length - 3] + '...'
def get_file_cards(file_dict):
cards = []
for name in file_dict:
cards.append(
dbc.Card(
dbc.CardBody(
dbc.Row([
dbc.Col(
html.Span(
truncate_filename(name),
title=name,
style={
'display': 'inline-block',
'overflow': 'hidden',
'textOverflow': 'ellipsis',
'whiteSpace': 'nowrap',
'maxWidth': '90%',
'verticalAlign': 'middle',
}
),
width='auto',
style={'display': 'flex', 'alignItems': 'center', 'padding': '0'}
),
dbc.Col(
dbc.Button(
"Delete",
id={'type': 'remove-file', 'index': name},
color="danger",
size="sm",
style={'marginLeft': 'auto', 'float': 'right'}
),
width='auto',
style={'display': 'flex', 'alignItems': 'center', 'justifyContent': 'flex-end', 'padding': '0'}
),
],
justify="between",
align="center",
style={"margin": "0", "padding": "0"}
),
style={'padding': '6px 8px', 'margin': '0', 'display': 'flex', 'alignItems': 'center', 'background': 'none', 'boxShadow': 'none'}
),
style={'border': 'none', 'boxShadow': 'none', 'background': 'none', 'marginBottom': '2px'}
)
)
return cards
# --- Callbacks ---
@app.callback(
Output('file-list', 'children'),
Input('upload-files', 'contents'),
State('upload-files', 'filename'),
prevent_initial_call=True
)
def update_output(list_of_contents, list_of_names):
session_data, lock = get_session_data()
logger.info("Uploading files...")
if list_of_contents is not None:
with lock:
for content, name in zip(list_of_contents, list_of_names):
content_type, content_string = content.split(',')
decoded = base64.b64decode(content_string)
temp_path = os.path.join(session_data['temp_dir'], name)
with open(temp_path, 'wb') as f:
f.write(decoded)
session_data['uploaded_files'][name] = temp_path
session_data['file_texts'][name] = parse_file_content(temp_path, name)
logger.info(f"Files after upload: {list(session_data['uploaded_files'].keys())}")
return get_file_cards(session_data['uploaded_files'])
raise PreventUpdate
@app.callback(
Output('file-list', 'children', allow_duplicate=True),
Input({'type': 'remove-file', 'index': ALL}, 'n_clicks'),
State('file-list', 'children'),
prevent_initial_call=True
)
def remove_file(n_clicks, existing_cards):
session_data, lock = get_session_data()
ctx = dash.callback_context
if not ctx.triggered:
raise PreventUpdate
triggered_id = ctx.triggered[0]['prop_id'].split('.')[0]
import ast
try:
triggered_id_dict = ast.literal_eval(triggered_id)
removed_file = triggered_id_dict['index']
except Exception:
raise PreventUpdate
with lock:
if removed_file in session_data['uploaded_files']:
try:
os.remove(session_data['uploaded_files'][removed_file])
except Exception as e:
logger.warning(f"Failed to delete temp file {removed_file}: {e}")
session_data['uploaded_files'].pop(removed_file, None)
session_data['file_texts'].pop(removed_file, None)
logger.info(f"Files after deletion: {list(session_data['uploaded_files'].keys())}")
return get_file_cards(session_data['uploaded_files'])
@app.callback(
Output('matrix-preview', 'children'),
Output('loading-output', 'children'),
[Input({'type': 'matrix-btn', 'index': matrix_label}, 'n_clicks') for matrix_label in matrix_types.keys()],
prevent_initial_call=True
)
def generate_matrix(*args):
session_data, lock = get_session_data()
ctx = dash.callback_context
if not ctx.triggered:
raise PreventUpdate
button_id = ctx.triggered[0]['prop_id'].split('.')[0]
import ast
try:
triggered = ast.literal_eval(button_id)
matrix_type = triggered['index']
except Exception:
raise PreventUpdate
if not session_data['uploaded_files']:
return html.Div("Please upload project artifacts before generating a matrix."), ""
file_contents = list(session_data['file_texts'].values())
with lock:
try:
session_data['matrix_type'] = matrix_type
session_data['current_matrix'] = generate_matrix_with_gpt(matrix_type, file_contents)
logger.info(f"{matrix_type} generated for session.")
return dbc.Table.from_dataframe(session_data['current_matrix'], striped=True, bordered=True, hover=True), f"{matrix_type} generated"
except Exception as e:
logger.exception(f"Error generating matrix: {str(e)}")
return html.Div(f"Error generating matrix: {str(e)}"), "Error"
def generate_matrix_with_gpt(matrix_type, file_contents):
prompt = f"""Generate a {matrix_type} based on the following project artifacts:
{' '.join(file_contents)}
Instructions:
1. Create the {matrix_type} as a table.
2. Use ONLY pipe symbols (|) to separate columns.
3. Do NOT include any introductory text, descriptions, or explanations.
4. Do NOT use any dashes (-) or other formatting characters.
5. The first row should be the column headers.
6. Start the output immediately with the column headers.
7. Each subsequent row should represent a single item in the matrix.
Example format:
Header1|Header2|Header3
Item1A|Item1B|Item1C
Item2A|Item2B|Item2C
Now, generate the {matrix_type}:
"""
response = openai.ChatCompletion.create(
model="gpt-4-turbo",
messages=[
{"role": "system", "content": "You are a precise matrix generator that outputs only the requested matrix without any additional text. Based on the files uploaded, as the project manager you perform the analysis and make appropriate assumptions to populate the matrix like roles, tasks, timelines, logically sequencing the matrix etc."},
{"role": "user", "content": prompt}
]
)
matrix_text = response.choices[0].message.content.strip()
logger.info(f"Raw matrix text from GPT: {matrix_text[:200]}...") # log only first 200 chars
lines = [line.strip() for line in matrix_text.split('\n') if '|' in line]
data = [line.split('|') for line in lines]
data = [[cell.strip() for cell in row] for row in data]
headers = data[0]
data = data[1:]
return pd.DataFrame(data, columns=headers)
@app.callback(
Output('chat-output', 'children'),
Output('matrix-preview', 'children', allow_duplicate=True),
Input('btn-send-chat', 'n_clicks'),
State('chat-input', 'value'),
prevent_initial_call=True
)
def update_matrix_via_chat(n_clicks, chat_input):
session_data, lock = get_session_data()
if not chat_input or session_data['current_matrix'] is None or session_data['matrix_type'] is None:
raise PreventUpdate
matrix_type = session_data['matrix_type']
with lock:
prompt = f"""Update the following {matrix_type} based on this instruction: {chat_input}
Current matrix:
{session_data['current_matrix'].to_string(index=False)}
Instructions:
1. Provide ONLY the updated matrix as a table.
2. Use ONLY pipe symbols (|) to separate columns.
3. Do NOT include any introductory text, descriptions, or explanations.
4. Do NOT use any dashes (-) or other formatting characters.
5. The first row should be the column headers.
6. Start the output immediately with the column headers.
7. Each subsequent row should represent a single item in the matrix.
Now, provide the updated {matrix_type}:
"""
response = openai.ChatCompletion.create(
model="gpt-4-turbo",
messages=[
{"role": "system", "content": "You are a precise matrix updater that outputs only the requested matrix without any additional text. You will make assumptions as a project manager to produce the matrix based on the limited information provided"},
{"role": "user", "content": prompt}
]
)
updated_matrix_text = response.choices[0].message.content.strip()
logger.info(f"Raw updated matrix text from GPT: {updated_matrix_text[:200]}...")
lines = [line.strip() for line in updated_matrix_text.split('\n') if '|' in line]
data = [line.split('|') for line in lines]
data = [[cell.strip() for cell in row] for row in data]
headers = data[0]
data = data[1:]
session_data['current_matrix'] = pd.DataFrame(data, columns=headers)
return f"Matrix updated based on: {chat_input}", dbc.Table.from_dataframe(session_data['current_matrix'], striped=True, bordered=True, hover=True)
@app.callback(
Output("download-matrix", "data"),
Input("btn-download", "n_clicks"),
prevent_initial_call=True
)
def download_matrix(n_clicks):
session_data, lock = get_session_data()
if session_data['current_matrix'] is None or session_data['matrix_type'] is None:
raise PreventUpdate
output = io.BytesIO()
with pd.ExcelWriter(output, engine='xlsxwriter') as writer:
session_data['current_matrix'].to_excel(writer, sheet_name='Sheet1', index=False)
logger.info(f"Matrix downloaded: {session_data['matrix_type']}")
return dcc.send_bytes(output.getvalue(), f"{session_data['matrix_type']}.xlsx")
if __name__ == '__main__':
print("Starting the Dash application...")
app.run(debug=True, host='0.0.0.0', port=7860, threaded=True)
print("Dash application has finished running.") |