File size: 2,832 Bytes
779cbde
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
import json
import os
from typing import Any, Dict

import pandas as pd
from huggingface_hub import HfApi, hf_hub_download

class ModelHandler:
    def __init__(self, model_infos_path="D:\Vscode\llm_benchmark_space\ArmBen\model_results.json"):
        self.api = HfApi()
        self.model_infos_path = model_infos_path
        self.model_infos = self._load_model_infos()

    def _load_model_infos(self) -> Dict:
        if os.path.exists(self.model_infos_path):
            with open(self.model_infos_path) as f:
                return json.load(f)
        return {}

    def _save_model_infos(self):
        print("Saving model infos")
        with open(self.model_infos_path, "w") as f:
            json.dump(self.model_infos, f, indent=4)

    def get_arm_bench_data(self):
        models = self.api.list_models(filter="arm_llm")
        model_names = {model["model_name"] for model in self.model_infos}
        repositories = [model.modelId for model in models]

        for repo_id in repositories:            
            files = [f for f in self.api.list_repo_files(repo_id) if f == "results.json"]
            if not files:
                continue
            
            for file in files:
                model_name = repo_id
                if model_name not in model_names:
                    try:
                        result_path = hf_hub_download(repo_id, filename=file)
                        with open(result_path) as f:
                            results = json.load(f)

                        self.model_infos.append({
                            "model_name": model_name,
                            "results": results
                        })

                    except Exception as e:
                        print(f"Error loading {model_name} - {e}")
                        continue

        self._save_model_infos()

        mmlu_data = []
        unified_exam_data = []

        for model in self.model_infos:
            model_name = model["model_name"]
            results = model.get("results", {})

            mmlu_results = results.get("mmlu_results", [])
            unified_exam_results = results.get("unified_exam_results", [])

            if mmlu_results:
                mmlu_row = {"Model": model_name}
                for result in mmlu_results:
                    mmlu_row[result["category"]] = result["score"]
                mmlu_data.append(mmlu_row)

            if unified_exam_results:
                unified_exam_row = {"Model": model_name}
                for result in unified_exam_results:
                    unified_exam_row[result["category"]] = result["score"]
                unified_exam_data.append(unified_exam_row)


        mmlu_df = pd.DataFrame(mmlu_data)
        unified_exam_df = pd.DataFrame(unified_exam_data)

        return mmlu_df, unified_exam_df