File size: 11,839 Bytes
ede29cb 5982a2e ede29cb 5982a2e ede29cb 8e2d3da ede29cb 5982a2e ede29cb 5982a2e 18f50ed ede29cb 5982a2e ede29cb 5982a2e ede29cb 5982a2e ede29cb 5982a2e ede29cb 5982a2e ede29cb 5982a2e 8e2d3da 5982a2e ede29cb 5982a2e 8e2d3da 5982a2e ede29cb a3047a6 5982a2e a3047a6 5982a2e a3047a6 5982a2e a3047a6 5982a2e a3047a6 5982a2e a3047a6 5982a2e a3047a6 5982a2e a3047a6 5982a2e a3047a6 5982a2e a3047a6 5982a2e a3047a6 5982a2e a3047a6 5982a2e 8e2d3da 5982a2e ede29cb 5982a2e a3047a6 5982a2e 8e2d3da ede29cb 5982a2e 6da2e2e 5982a2e a3047a6 5982a2e a3047a6 5982a2e a3047a6 5982a2e a3047a6 5982a2e a3047a6 5982a2e a3047a6 5982a2e a3047a6 5982a2e a3047a6 5982a2e a3047a6 5982a2e a3047a6 5982a2e a3047a6 5982a2e a3047a6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 |
import os
import re
import logging
import requests
import PyPDF2
import numpy as np
import pandas as pd
from io import BytesIO
from typing import List, Dict, Tuple
from urllib.parse import urlparse, urljoin
from concurrent.futures import ThreadPoolExecutor, as_completed
from bs4 import BeautifulSoup
from pathlib import Path
from datetime import datetime
from sklearn.feature_extraction.text import TfidfVectorizer
from requests.adapters import HTTPAdapter
from urllib3.util.retry import Retry
from transformers import pipeline
from sentence_transformers import SentenceTransformer, util
import torch
import spacy
import matplotlib.pyplot as plt
from utils import sanitize_filename
# Palabras no permitidas en SEO financiero/bancario
PROHIBITED_TERMS = [
"gratis", "garantizado", "rentabilidad asegurada", "sin compromiso",
"resultados inmediatos", "cero riesgo", "sin letra pequeña"
]
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
class SEOSpaceAnalyzer:
def __init__(self, max_urls: int = 20, max_workers: int = 4):
self.max_urls = max_urls
self.max_workers = max_workers
self.session = self._configure_session()
self.models = self._load_models()
self.base_dir = Path("content_storage")
self.base_dir.mkdir(parents=True, exist_ok=True)
self.current_analysis: Dict = {}
def _configure_session(self):
session = requests.Session()
retry = Retry(total=3, backoff_factor=1,
status_forcelist=[500, 502, 503, 504],
allowed_methods=["GET"])
session.mount("http://", HTTPAdapter(max_retries=retry))
session.mount("https://", HTTPAdapter(max_retries=retry))
session.headers.update({
"User-Agent": "SEOAnalyzer/1.0",
"Accept-Language": "es-ES,es;q=0.9"
})
return session
def _load_models(self):
device = 0 if torch.cuda.is_available() else -1
return {
"spacy": spacy.load("es_core_news_lg"),
"summarizer": pipeline("summarization", model="facebook/bart-large-cnn", device=device),
"ner": pipeline("ner", model="dslim/bert-base-NER", aggregation_strategy="simple", device=device),
"semantic": SentenceTransformer("paraphrase-multilingual-MiniLM-L12-v2"),
"zeroshot": pipeline("zero-shot-classification", model="facebook/bart-large-mnli")
}
def analyze_sitemap(self, sitemap_url: str) -> Tuple:
urls = self._parse_sitemap(sitemap_url)
if not urls:
return {"error": "No se pudieron extraer URLs"}, [], {}, {}, [], {}, {}, {}
results = []
with ThreadPoolExecutor(max_workers=self.max_workers) as executor:
futures = {executor.submit(self._process_url, url): url for url in urls[:self.max_urls]}
for future in as_completed(futures):
try:
results.append(future.result())
except Exception as e:
results.append({"url": futures[future], "status": "error", "error": str(e)})
summaries, entities = self._apply_nlp(results)
similarities = self._compute_similarity(results)
flags = self._flag_prohibited_terms(results)
topics = self._classify_topics(results)
seo_tags = self._generate_seo_tags(results, summaries, topics, flags)
self.current_analysis = {
"stats": self._calculate_stats(results),
"content_analysis": self._analyze_content(results),
"links": self._analyze_links(results),
"recommendations": self._generate_recommendations(results),
"details": results,
"summaries": summaries,
"entities": entities,
"similarities": similarities,
"flags": flags,
"topics": topics,
"seo_tags": seo_tags,
"timestamp": datetime.now().isoformat()
}
a = self.current_analysis
return (
a["stats"], a["recommendations"], a["content_analysis"],
a["links"], a["details"], a["summaries"],
a["similarities"], a["seo_tags"]
)
def _process_url(self, url: str) -> Dict:
try:
response = self.session.get(url, timeout=10)
content_type = response.headers.get("Content-Type", "")
if "application/pdf" in content_type:
return self._process_pdf(url, response.content)
return self._process_html(url, response.text)
except Exception as e:
return {"url": url, "status": "error", "error": str(e)}
def _process_html(self, url: str, html: str) -> Dict:
soup = BeautifulSoup(html, "html.parser")
text = re.sub(r"\\s+", " ", soup.get_text())
return {
"url": url,
"type": "html",
"status": "success",
"content": text,
"word_count": len(text.split()),
"metadata": self._extract_metadata(soup),
"links": self._extract_links(soup, url)
}
def _process_pdf(self, url: str, content: bytes) -> Dict:
try:
reader = PyPDF2.PdfReader(BytesIO(content))
text = "".join(p.extract_text() or "" for p in reader.pages)
return {
"url": url,
"type": "pdf",
"status": "success",
"content": text,
"word_count": len(text.split()),
"page_count": len(reader.pages)
}
except Exception as e:
return {"url": url, "status": "error", "error": str(e)}
def _extract_metadata(self, soup) -> Dict:
meta = {"title": "", "description": ""}
if soup.title:
meta["title"] = soup.title.string.strip()
for tag in soup.find_all("meta"):
if tag.get("name") == "description":
meta["description"] = tag.get("content", "")
return meta
def _extract_links(self, soup, base_url) -> List[Dict]:
links = []
base_domain = urlparse(base_url).netloc
for tag in soup.find_all("a", href=True):
href = tag["href"]
full_url = urljoin(base_url, href)
netloc = urlparse(full_url).netloc
links.append({
"url": full_url,
"type": "internal" if netloc == base_domain else "external",
"anchor": tag.get_text(strip=True)
})
return links
def _parse_sitemap(self, sitemap_url: str) -> List[str]:
try:
r = self.session.get(sitemap_url)
soup = BeautifulSoup(r.text, "lxml-xml")
return [loc.text for loc in soup.find_all("loc")]
except:
return []
def _apply_nlp(self, results) -> Tuple[Dict, Dict]:
summaries, entities = {}, {}
for r in results:
if r.get("status") != "success" or not r.get("content"): continue
text = r["content"][:1024]
try:
summaries[r["url"]] = self.models["summarizer"](text, max_length=100, min_length=30)[0]["summary_text"]
ents = self.models["ner"](text)
entities[r["url"]] = list({e["word"] for e in ents if e["score"] > 0.8})
except:
continue
return summaries, entities
def _compute_similarity(self, results) -> Dict[str, List[Dict]]:
docs = [(r["url"], r["content"]) for r in results if r.get("status") == "success" and r.get("content")]
if len(docs) < 2: return {}
urls, texts = zip(*docs)
emb = self.models["semantic"].encode(texts, convert_to_tensor=True)
sim = util.pytorch_cos_sim(emb, emb)
return {
urls[i]: [{"url": urls[j], "score": float(sim[i][j])}
for j in np.argsort(-sim[i]) if i != j][:3]
for i in range(len(urls))
}
def _flag_prohibited_terms(self, results) -> Dict[str, List[str]]:
flags = {}
for r in results:
found = [term for term in PROHIBITED_TERMS if term in r.get("content", "").lower()]
if found:
flags[r["url"]] = found
return flags
def _classify_topics(self, results) -> Dict[str, List[str]]:
labels = [
"hipotecas", "préstamos", "cuentas", "tarjetas",
"seguros", "inversión", "educación financiera"
]
topics = {}
for r in results:
if r.get("status") != "success": continue
try:
res = self.models["zeroshot"](r["content"][:1000], candidate_labels=labels, multi_label=True)
topics[r["url"]] = [l for l, s in zip(res["labels"], res["scores"]) if s > 0.5]
except:
continue
return topics
def _generate_seo_tags(self, results, summaries, topics, flags) -> Dict[str, Dict]:
seo_tags = {}
for r in results:
url = r["url"]
base = summaries.get(url, r.get("content", "")[:300])
topic = topics.get(url, ["contenido"])[0]
try:
prompt = f"Genera un título SEO formal y una meta descripción para contenido sobre {topic}: {base}"
output = self.models["summarizer"](prompt, max_length=60, min_length=20)[0]["summary_text"]
title, desc = output.split(".")[0], output
except:
title, desc = "", ""
seo_tags[url] = {
"title": title,
"meta_description": desc,
"flags": flags.get(url, [])
}
return seo_tags
def _calculate_stats(self, results):
success = [r for r in results if r.get("status") == "success"]
return {
"total": len(results),
"success": len(success),
"failed": len(results) - len(success),
"avg_words": round(np.mean([r.get("word_count", 0) for r in success]), 1)
}
def _analyze_content(self, results):
texts = [r["content"] for r in results if r.get("status") == "success" and r.get("content")]
if not texts:
return {}
tfidf = TfidfVectorizer(max_features=20, stop_words=list(self.models["spacy"].Defaults.stop_words))
tfidf.fit(texts)
top = tfidf.get_feature_names_out().tolist()
return {"top_keywords": top, "samples": texts[:3]}
def _analyze_links(self, results):
all_links = []
for r in results:
all_links.extend(r.get("links", []))
if not all_links:
return {}
df = pd.DataFrame(all_links)
return {
"internal_links": df[df["type"] == "internal"]["url"].value_counts().head(10).to_dict(),
"external_links": df[df["type"] == "external"]["url"].value_counts().head(10).to_dict()
}
def _generate_recommendations(self, results):
recs = []
if any(r.get("word_count", 0) < 300 for r in results):
recs.append("✍️ Algunos contenidos son demasiado breves (<300 palabras)")
if any("gratis" in r.get("content", "").lower() for r in results):
recs.append("⚠️ Detectado uso de lenguaje no permitido")
return recs or ["✅ Todo parece correcto"]
def plot_internal_links(self, links: Dict):
if not links or not links.get("internal_links"):
fig, ax = plt.subplots()
ax.text(0.5, 0.5, "No hay enlaces internos", ha="center")
return fig
top = links["internal_links"]
fig, ax = plt.subplots()
ax.barh(list(top.keys()), list(top.values()))
ax.set_title("Top Enlaces Internos")
plt.tight_layout()
return fig
|