File size: 16,530 Bytes
ede29cb 8e2d3da ede29cb 18f50ed ede29cb 8e2d3da ede29cb 8e2d3da ede29cb 8e2d3da ede29cb 8e2d3da ede29cb 8e2d3da ede29cb 8e2d3da ede29cb a3047a6 8e2d3da a3047a6 ede29cb 8e2d3da a3047a6 8e2d3da ede29cb 8e2d3da ede29cb 8e2d3da a3047a6 8e2d3da 6da2e2e a3047a6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 |
import os
import logging
import re
import requests
import hashlib
import PyPDF2
import numpy as np
import pandas as pd
from io import BytesIO
from typing import List, Dict, Any, Tuple
from urllib.parse import urlparse, urljoin
from concurrent.futures import ThreadPoolExecutor, as_completed
from bs4 import BeautifulSoup
from pathlib import Path
from datetime import datetime
from sklearn.feature_extraction.text import TfidfVectorizer
from requests.adapters import HTTPAdapter
from urllib3.util.retry import Retry
from transformers import pipeline
from sentence_transformers import SentenceTransformer, util
import torch
import spacy
import matplotlib.pyplot as plt
from utils import sanitize_filename
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(levelname)s - %(message)s'
)
logger = logging.getLogger(__name__)
class SEOSpaceAnalyzer:
def __init__(self, max_urls: int = 20, max_workers: int = 4) -> None:
self.max_urls = max_urls
self.max_workers = max_workers
self.session = self._configure_session()
self.models = self._load_models()
self.base_dir = Path("content_storage")
self.base_dir.mkdir(parents=True, exist_ok=True)
self.current_analysis: Dict[str, Any] = {}
def _load_models(self) -> Dict[str, Any]:
try:
device = 0 if torch.cuda.is_available() else -1
logger.info("Cargando modelos NLP...")
models = {
'summarizer': pipeline("summarization", model="facebook/bart-large-cnn", device=device),
'ner': pipeline("ner", model="dslim/bert-base-NER", aggregation_strategy="simple", device=device),
'semantic': SentenceTransformer('paraphrase-multilingual-MiniLM-L12-v2'),
'spacy': spacy.load("es_core_news_lg")
}
logger.info("Modelos cargados correctamente.")
return models
except Exception as e:
logger.error(f"Error cargando modelos: {e}")
raise
def _configure_session(self) -> requests.Session:
session = requests.Session()
retry = Retry(
total=3,
backoff_factor=1,
status_forcelist=[500, 502, 503, 504],
allowed_methods=['GET', 'HEAD']
)
adapter = HTTPAdapter(max_retries=retry)
session.mount('http://', adapter)
session.mount('https://', adapter)
session.headers.update({
'User-Agent': 'Mozilla/5.0 (compatible; SEOBot/1.0)',
'Accept-Language': 'es-ES,es;q=0.9'
})
return session
def analyze_sitemap(self, sitemap_url: str) -> Tuple[Dict, List[str], Dict, Dict, List[Dict], Dict, Dict]:
try:
urls = self._parse_sitemap(sitemap_url)
if not urls:
return {"error": "No se pudieron extraer URLs del sitemap"}, [], {}, {}, [], {}, {}
results: List[Dict] = []
with ThreadPoolExecutor(max_workers=self.max_workers) as executor:
futures = {executor.submit(self._process_url, url): url for url in urls[:self.max_urls]}
for future in as_completed(futures):
url = futures[future]
try:
res = future.result()
results.append(res)
logger.info(f"Procesado: {url}")
except Exception as e:
logger.error(f"Error procesando {url}: {e}")
results.append({'url': url, 'status': 'error', 'error': str(e)})
summaries, entities = self._apply_nlp(results)
similarities = self._compute_semantic_similarity(results)
self.current_analysis = {
'stats': self._calculate_stats(results),
'content_analysis': self._analyze_content(results),
'links': self._analyze_links(results),
'recommendations': self._generate_seo_recommendations(results),
'details': results,
'summaries': summaries,
'entities': entities,
'similarities': similarities,
'timestamp': datetime.now().isoformat()
}
a = self.current_analysis
return a['stats'], a['recommendations'], a['content_analysis'], a['links'], a['details'], a['summaries'], a['similarities']
except Exception as e:
logger.error(f"Error en análisis: {e}")
return {"error": str(e)}, [], {}, {}, [], {}, {}
def _process_url(self, url: str) -> Dict:
try:
response = self.session.get(url, timeout=15)
response.raise_for_status()
content_type = response.headers.get('Content-Type', '')
result: Dict[str, Any] = {'url': url, 'status': 'success'}
if 'application/pdf' in content_type:
result.update(self._process_pdf(response.content))
elif 'text/html' in content_type:
result.update(self._process_html(response.text, url))
else:
result.update({'type': 'unknown', 'content': '', 'word_count': 0})
self._save_content(url, response.content)
return result
except requests.exceptions.Timeout as e:
return {'url': url, 'status': 'error', 'error': "Timeout"}
except requests.exceptions.HTTPError as e:
return {'url': url, 'status': 'error', 'error': "HTTP Error"}
except Exception as e:
return {'url': url, 'status': 'error', 'error': str(e)}
def _process_html(self, html: str, base_url: str) -> Dict:
soup = BeautifulSoup(html, 'html.parser')
clean_text = self._clean_text(soup.get_text())
return {
'type': 'html',
'content': clean_text,
'word_count': len(clean_text.split()),
'metadata': self._extract_metadata(soup),
'links': self._extract_links(soup, base_url)
}
def _process_pdf(self, content: bytes) -> Dict:
try:
text = ""
with BytesIO(content) as pdf_file:
reader = PyPDF2.PdfReader(pdf_file)
for page in reader.pages:
extracted = page.extract_text()
text += extracted if extracted else ""
clean_text = self._clean_text(text)
return {
'type': 'pdf',
'content': clean_text,
'word_count': len(clean_text.split()),
'page_count': len(reader.pages)
}
except Exception as e:
return {'type': 'pdf', 'error': str(e)}
def _clean_text(self, text: str) -> str:
if not text:
return ""
text = re.sub(r'\s+', ' ', text)
return re.sub(r'[^\w\sáéíóúñÁÉÍÓÚÑ]', ' ', text).strip()
def _extract_metadata(self, soup: BeautifulSoup) -> Dict:
metadata = {'title': '', 'description': '', 'keywords': [], 'og': {}}
if soup.title and soup.title.string:
metadata['title'] = soup.title.string.strip()[:200]
for meta in soup.find_all('meta'):
name = meta.get('name', '').lower()
prop = meta.get('property', '').lower()
content = meta.get('content', '')
if name == 'description':
metadata['description'] = content[:300]
elif name == 'keywords':
metadata['keywords'] = [kw.strip() for kw in content.split(',') if kw.strip()]
elif prop.startswith('og:'):
metadata['og'][prop[3:]] = content
return metadata
def _extract_links(self, soup: BeautifulSoup, base_url: str) -> List[Dict]:
links: List[Dict] = []
base_netloc = urlparse(base_url).netloc
for tag in soup.find_all('a', href=True):
try:
href = tag['href'].strip()
if not href or href.startswith('javascript:'):
continue
full_url = urljoin(base_url, href)
parsed = urlparse(full_url)
links.append({
'url': full_url,
'type': 'internal' if parsed.netloc == base_netloc else 'external',
'anchor': self._clean_text(tag.get_text())[:100],
'file_type': self._get_file_type(parsed.path)
})
except:
continue
return links
def _get_file_type(self, path: str) -> str:
ext = Path(path).suffix.lower()
return ext[1:] if ext else 'html'
def _parse_sitemap(self, sitemap_url: str) -> List[str]:
try:
response = self.session.get(sitemap_url, timeout=10)
response.raise_for_status()
if 'xml' not in response.headers.get('Content-Type', ''):
return []
soup = BeautifulSoup(response.text, 'lxml-xml')
urls: List[str] = []
if soup.find('sitemapindex'):
for sitemap in soup.find_all('loc'):
url = sitemap.text.strip()
if url.endswith('.xml'):
urls.extend(self._parse_sitemap(url))
else:
urls = [loc.text.strip() for loc in soup.find_all('loc')]
return list({url for url in urls if url.startswith('http')})
except:
return []
def _save_content(self, url: str, content: bytes) -> None:
try:
parsed = urlparse(url)
domain_dir = self.base_dir / parsed.netloc
raw_path = parsed.path.lstrip('/')
if not raw_path or raw_path.endswith('/'):
raw_path = os.path.join(raw_path, 'index.html') if raw_path else 'index.html'
safe_path = sanitize_filename(raw_path)
save_path = domain_dir / safe_path
save_path.parent.mkdir(parents=True, exist_ok=True)
with open(save_path, 'wb') as f:
f.write(content)
except:
pass
def _apply_nlp(self, results: List[Dict]) -> Tuple[Dict[str, str], Dict[str, List[str]]]:
summaries = {}
entities = {}
for r in results:
if r.get('status') != 'success' or not r.get('content'):
continue
content = r['content']
if len(content.split()) > 300:
try:
summary = self.models['summarizer'](content[:1024], max_length=100, min_length=30, do_sample=False)[0]['summary_text']
summaries[r['url']] = summary
except:
pass
try:
ents = self.models['ner'](content[:1000])
entities[r['url']] = list(set([e['word'] for e in ents if e['entity_group'] in ['PER', 'ORG', 'LOC']]))
except:
pass
return summaries, entities
def _compute_semantic_similarity(self, results: List[Dict]) -> Dict[str, List[Dict]]:
contents = [(r['url'], r['content']) for r in results if r.get('status') == 'success' and r.get('content')]
if len(contents) < 2:
return {}
try:
urls, texts = zip(*contents)
embeddings = self.models['semantic'].encode(texts, convert_to_tensor=True)
sim_matrix = util.pytorch_cos_sim(embeddings, embeddings)
similarity_dict = {}
for i, url in enumerate(urls):
scores = list(sim_matrix[i])
top_indices = sorted(range(len(scores)), key=lambda j: scores[j], reverse=True)
top_similar = [
{"url": urls[j], "score": float(scores[j])}
for j in top_indices if j != i and float(scores[j]) > 0.5
][:3]
similarity_dict[url] = top_similar
return similarity_dict
except:
return {}
def _calculate_stats(self, results: List[Dict]) -> Dict:
successful = [r for r in results if r.get('status') == 'success']
content_types = [r.get('type', 'unknown') for r in successful]
avg_word_count = round(np.mean([r.get('word_count', 0) for r in successful]) if successful else 0, 1)
return {
'total_urls': len(results),
'successful': len(successful),
'failed': len(results) - len(successful),
'content_types': pd.Series(content_types).value_counts().to_dict(),
'avg_word_count': avg_word_count,
'failed_urls': [r['url'] for r in results if r.get('status') != 'success']
}
def _analyze_content(self, results: List[Dict]) -> Dict:
successful = [r for r in results if r.get('status') == 'success' and r.get('content')]
texts = [r['content'] for r in successful if len(r['content'].split()) > 10]
if not texts:
return {'top_keywords': [], 'content_samples': []}
try:
stop_words = list(self.models['spacy'].Defaults.stop_words)
vectorizer = TfidfVectorizer(stop_words=stop_words, max_features=50, ngram_range=(1, 2))
tfidf = vectorizer.fit_transform(texts)
feature_names = vectorizer.get_feature_names_out()
sorted_indices = np.argsort(np.asarray(tfidf.sum(axis=0)).ravel())[-10:]
top_keywords = feature_names[sorted_indices][::-1].tolist()
except:
top_keywords = []
samples = [{'url': r['url'], 'sample': r['content'][:500] + '...' if len(r['content']) > 500 else r['content']} for r in successful[:3]]
return {'top_keywords': top_keywords, 'content_samples': samples}
def _analyze_links(self, results: List[Dict]) -> Dict:
all_links = []
for result in results:
if result.get('links'):
all_links.extend(result['links'])
if not all_links:
return {'internal_links': {}, 'external_domains': {}, 'common_anchors': {}, 'file_types': {}}
df = pd.DataFrame(all_links)
return {
'internal_links': df[df['type'] == 'internal']['url'].value_counts().head(20).to_dict(),
'external_domains': df[df['type'] == 'external']['url'].apply(lambda x: urlparse(x).netloc).value_counts().head(10).to_dict(),
'common_anchors': df['anchor'].value_counts().head(10).to_dict(),
'file_types': df['file_type'].value_counts().to_dict()
}
def _generate_seo_recommendations(self, results: List[Dict]) -> List[str]:
successful = [r for r in results if r.get('status') == 'success']
if not successful:
return ["No se pudo analizar ningún contenido exitosamente"]
recs = []
missing_titles = sum(1 for r in successful if not r.get('metadata', {}).get('title'))
if missing_titles:
recs.append(f"📌 Añadir títulos a {missing_titles} páginas")
short_descriptions = sum(1 for r in successful if not r.get('metadata', {}).get('description'))
if short_descriptions:
recs.append(f"📌 Añadir meta descripciones a {short_descriptions} páginas")
short_content = sum(1 for r in successful if r.get('word_count', 0) < 300)
if short_content:
recs.append(f"📝 Ampliar contenido en {short_content} páginas (menos de 300 palabras)")
all_links = [link for r in results for link in r.get('links', [])]
if all_links:
df_links = pd.DataFrame(all_links)
internal_links = df_links[df_links['type'] == 'internal']
if len(internal_links) > 100:
recs.append(f"🔗 Optimizar estructura de enlaces internos ({len(internal_links)} enlaces)")
return recs if recs else ["✅ No se detectaron problemas críticos de SEO"]
def plot_internal_links(self, links_data: Dict) -> Any:
internal_links = links_data.get('internal_links', {})
fig, ax = plt.subplots()
if not internal_links:
ax.text(0.5, 0.5, 'No hay enlaces internos', ha='center', va='center', transform=ax.transAxes)
ax.axis('off')
else:
names = list(internal_links.keys())
counts = list(internal_links.values())
ax.barh(names, counts)
ax.set_xlabel("Cantidad de enlaces")
ax.set_title("Top 20 Enlaces Internos")
plt.tight_layout()
return fig
|