File size: 16,530 Bytes
ede29cb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8e2d3da
ede29cb
 
 
 
 
 
 
 
 
 
 
 
18f50ed
ede29cb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8e2d3da
ede29cb
 
 
8e2d3da
 
ede29cb
 
 
 
 
 
 
 
 
 
 
 
 
8e2d3da
 
 
ede29cb
 
 
 
 
 
8e2d3da
 
 
ede29cb
 
8e2d3da
 
ede29cb
 
8e2d3da
ede29cb
a3047a6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8e2d3da
 
 
 
 
 
 
 
 
 
 
a3047a6
 
ede29cb
8e2d3da
 
a3047a6
 
8e2d3da
ede29cb
8e2d3da
 
 
 
ede29cb
8e2d3da
 
 
 
 
 
 
 
 
 
 
 
 
a3047a6
8e2d3da
6da2e2e
a3047a6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
import os
import logging
import re
import requests
import hashlib
import PyPDF2
import numpy as np
import pandas as pd
from io import BytesIO
from typing import List, Dict, Any, Tuple
from urllib.parse import urlparse, urljoin
from concurrent.futures import ThreadPoolExecutor, as_completed
from bs4 import BeautifulSoup
from pathlib import Path
from datetime import datetime
from sklearn.feature_extraction.text import TfidfVectorizer
from requests.adapters import HTTPAdapter
from urllib3.util.retry import Retry
from transformers import pipeline
from sentence_transformers import SentenceTransformer, util
import torch
import spacy
import matplotlib.pyplot as plt

from utils import sanitize_filename

logging.basicConfig(
    level=logging.INFO,
    format='%(asctime)s - %(levelname)s - %(message)s'
)
logger = logging.getLogger(__name__)


class SEOSpaceAnalyzer:
    def __init__(self, max_urls: int = 20, max_workers: int = 4) -> None:
        self.max_urls = max_urls
        self.max_workers = max_workers
        self.session = self._configure_session()
        self.models = self._load_models()
        self.base_dir = Path("content_storage")
        self.base_dir.mkdir(parents=True, exist_ok=True)
        self.current_analysis: Dict[str, Any] = {}

    def _load_models(self) -> Dict[str, Any]:
        try:
            device = 0 if torch.cuda.is_available() else -1
            logger.info("Cargando modelos NLP...")
            models = {
                'summarizer': pipeline("summarization", model="facebook/bart-large-cnn", device=device),
                'ner': pipeline("ner", model="dslim/bert-base-NER", aggregation_strategy="simple", device=device),
                'semantic': SentenceTransformer('paraphrase-multilingual-MiniLM-L12-v2'),
                'spacy': spacy.load("es_core_news_lg")
            }
            logger.info("Modelos cargados correctamente.")
            return models
        except Exception as e:
            logger.error(f"Error cargando modelos: {e}")
            raise

    def _configure_session(self) -> requests.Session:
        session = requests.Session()
        retry = Retry(
            total=3,
            backoff_factor=1,
            status_forcelist=[500, 502, 503, 504],
            allowed_methods=['GET', 'HEAD']
        )
        adapter = HTTPAdapter(max_retries=retry)
        session.mount('http://', adapter)
        session.mount('https://', adapter)
        session.headers.update({
            'User-Agent': 'Mozilla/5.0 (compatible; SEOBot/1.0)',
            'Accept-Language': 'es-ES,es;q=0.9'
        })
        return session

    def analyze_sitemap(self, sitemap_url: str) -> Tuple[Dict, List[str], Dict, Dict, List[Dict], Dict, Dict]:
        try:
            urls = self._parse_sitemap(sitemap_url)
            if not urls:
                return {"error": "No se pudieron extraer URLs del sitemap"}, [], {}, {}, [], {}, {}

            results: List[Dict] = []
            with ThreadPoolExecutor(max_workers=self.max_workers) as executor:
                futures = {executor.submit(self._process_url, url): url for url in urls[:self.max_urls]}
                for future in as_completed(futures):
                    url = futures[future]
                    try:
                        res = future.result()
                        results.append(res)
                        logger.info(f"Procesado: {url}")
                    except Exception as e:
                        logger.error(f"Error procesando {url}: {e}")
                        results.append({'url': url, 'status': 'error', 'error': str(e)})

            summaries, entities = self._apply_nlp(results)
            similarities = self._compute_semantic_similarity(results)

            self.current_analysis = {
                'stats': self._calculate_stats(results),
                'content_analysis': self._analyze_content(results),
                'links': self._analyze_links(results),
                'recommendations': self._generate_seo_recommendations(results),
                'details': results,
                'summaries': summaries,
                'entities': entities,
                'similarities': similarities,
                'timestamp': datetime.now().isoformat()
            }
            a = self.current_analysis
            return a['stats'], a['recommendations'], a['content_analysis'], a['links'], a['details'], a['summaries'], a['similarities']
        except Exception as e:
            logger.error(f"Error en análisis: {e}")
            return {"error": str(e)}, [], {}, {}, [], {}, {}

    def _process_url(self, url: str) -> Dict:
        try:
            response = self.session.get(url, timeout=15)
            response.raise_for_status()
            content_type = response.headers.get('Content-Type', '')
            result: Dict[str, Any] = {'url': url, 'status': 'success'}
            if 'application/pdf' in content_type:
                result.update(self._process_pdf(response.content))
            elif 'text/html' in content_type:
                result.update(self._process_html(response.text, url))
            else:
                result.update({'type': 'unknown', 'content': '', 'word_count': 0})
            self._save_content(url, response.content)
            return result
        except requests.exceptions.Timeout as e:
            return {'url': url, 'status': 'error', 'error': "Timeout"}
        except requests.exceptions.HTTPError as e:
            return {'url': url, 'status': 'error', 'error': "HTTP Error"}
        except Exception as e:
            return {'url': url, 'status': 'error', 'error': str(e)}

    def _process_html(self, html: str, base_url: str) -> Dict:
        soup = BeautifulSoup(html, 'html.parser')
        clean_text = self._clean_text(soup.get_text())
        return {
            'type': 'html',
            'content': clean_text,
            'word_count': len(clean_text.split()),
            'metadata': self._extract_metadata(soup),
            'links': self._extract_links(soup, base_url)
        }

    def _process_pdf(self, content: bytes) -> Dict:
        try:
            text = ""
            with BytesIO(content) as pdf_file:
                reader = PyPDF2.PdfReader(pdf_file)
                for page in reader.pages:
                    extracted = page.extract_text()
                    text += extracted if extracted else ""
            clean_text = self._clean_text(text)
            return {
                'type': 'pdf',
                'content': clean_text,
                'word_count': len(clean_text.split()),
                'page_count': len(reader.pages)
            }
        except Exception as e:
            return {'type': 'pdf', 'error': str(e)}

    def _clean_text(self, text: str) -> str:
        if not text:
            return ""
        text = re.sub(r'\s+', ' ', text)
        return re.sub(r'[^\w\sáéíóúñÁÉÍÓÚÑ]', ' ', text).strip()

    def _extract_metadata(self, soup: BeautifulSoup) -> Dict:
        metadata = {'title': '', 'description': '', 'keywords': [], 'og': {}}
        if soup.title and soup.title.string:
            metadata['title'] = soup.title.string.strip()[:200]
        for meta in soup.find_all('meta'):
            name = meta.get('name', '').lower()
            prop = meta.get('property', '').lower()
            content = meta.get('content', '')
            if name == 'description':
                metadata['description'] = content[:300]
            elif name == 'keywords':
                metadata['keywords'] = [kw.strip() for kw in content.split(',') if kw.strip()]
            elif prop.startswith('og:'):
                metadata['og'][prop[3:]] = content
        return metadata

    def _extract_links(self, soup: BeautifulSoup, base_url: str) -> List[Dict]:
        links: List[Dict] = []
        base_netloc = urlparse(base_url).netloc
        for tag in soup.find_all('a', href=True):
            try:
                href = tag['href'].strip()
                if not href or href.startswith('javascript:'):
                    continue
                full_url = urljoin(base_url, href)
                parsed = urlparse(full_url)
                links.append({
                    'url': full_url,
                    'type': 'internal' if parsed.netloc == base_netloc else 'external',
                    'anchor': self._clean_text(tag.get_text())[:100],
                    'file_type': self._get_file_type(parsed.path)
                })
            except:
                continue
        return links

    def _get_file_type(self, path: str) -> str:
        ext = Path(path).suffix.lower()
        return ext[1:] if ext else 'html'

    def _parse_sitemap(self, sitemap_url: str) -> List[str]:
        try:
            response = self.session.get(sitemap_url, timeout=10)
            response.raise_for_status()
            if 'xml' not in response.headers.get('Content-Type', ''):
                return []
            soup = BeautifulSoup(response.text, 'lxml-xml')
            urls: List[str] = []
            if soup.find('sitemapindex'):
                for sitemap in soup.find_all('loc'):
                    url = sitemap.text.strip()
                    if url.endswith('.xml'):
                        urls.extend(self._parse_sitemap(url))
            else:
                urls = [loc.text.strip() for loc in soup.find_all('loc')]
            return list({url for url in urls if url.startswith('http')})
        except:
            return []

    def _save_content(self, url: str, content: bytes) -> None:
        try:
            parsed = urlparse(url)
            domain_dir = self.base_dir / parsed.netloc
            raw_path = parsed.path.lstrip('/')
            if not raw_path or raw_path.endswith('/'):
                raw_path = os.path.join(raw_path, 'index.html') if raw_path else 'index.html'
            safe_path = sanitize_filename(raw_path)
            save_path = domain_dir / safe_path
            save_path.parent.mkdir(parents=True, exist_ok=True)
            with open(save_path, 'wb') as f:
                f.write(content)
        except:
            pass

    def _apply_nlp(self, results: List[Dict]) -> Tuple[Dict[str, str], Dict[str, List[str]]]:
        summaries = {}
        entities = {}
        for r in results:
            if r.get('status') != 'success' or not r.get('content'):
                continue
            content = r['content']
            if len(content.split()) > 300:
                try:
                    summary = self.models['summarizer'](content[:1024], max_length=100, min_length=30, do_sample=False)[0]['summary_text']
                    summaries[r['url']] = summary
                except:
                    pass
            try:
                ents = self.models['ner'](content[:1000])
                entities[r['url']] = list(set([e['word'] for e in ents if e['entity_group'] in ['PER', 'ORG', 'LOC']]))
            except:
                pass
        return summaries, entities

    def _compute_semantic_similarity(self, results: List[Dict]) -> Dict[str, List[Dict]]:
        contents = [(r['url'], r['content']) for r in results if r.get('status') == 'success' and r.get('content')]
        if len(contents) < 2:
            return {}
        try:
            urls, texts = zip(*contents)
            embeddings = self.models['semantic'].encode(texts, convert_to_tensor=True)
            sim_matrix = util.pytorch_cos_sim(embeddings, embeddings)
            similarity_dict = {}
            for i, url in enumerate(urls):
                scores = list(sim_matrix[i])
                top_indices = sorted(range(len(scores)), key=lambda j: scores[j], reverse=True)
                top_similar = [
                    {"url": urls[j], "score": float(scores[j])}
                    for j in top_indices if j != i and float(scores[j]) > 0.5
                ][:3]
                similarity_dict[url] = top_similar
            return similarity_dict
        except:
            return {}

    def _calculate_stats(self, results: List[Dict]) -> Dict:
        successful = [r for r in results if r.get('status') == 'success']
        content_types = [r.get('type', 'unknown') for r in successful]
        avg_word_count = round(np.mean([r.get('word_count', 0) for r in successful]) if successful else 0, 1)
        return {
            'total_urls': len(results),
            'successful': len(successful),
            'failed': len(results) - len(successful),
            'content_types': pd.Series(content_types).value_counts().to_dict(),
            'avg_word_count': avg_word_count,
            'failed_urls': [r['url'] for r in results if r.get('status') != 'success']
        }

    def _analyze_content(self, results: List[Dict]) -> Dict:
        successful = [r for r in results if r.get('status') == 'success' and r.get('content')]
        texts = [r['content'] for r in successful if len(r['content'].split()) > 10]
        if not texts:
            return {'top_keywords': [], 'content_samples': []}
        try:
            stop_words = list(self.models['spacy'].Defaults.stop_words)
            vectorizer = TfidfVectorizer(stop_words=stop_words, max_features=50, ngram_range=(1, 2))
            tfidf = vectorizer.fit_transform(texts)
            feature_names = vectorizer.get_feature_names_out()
            sorted_indices = np.argsort(np.asarray(tfidf.sum(axis=0)).ravel())[-10:]
            top_keywords = feature_names[sorted_indices][::-1].tolist()
        except:
            top_keywords = []
        samples = [{'url': r['url'], 'sample': r['content'][:500] + '...' if len(r['content']) > 500 else r['content']} for r in successful[:3]]
        return {'top_keywords': top_keywords, 'content_samples': samples}

    def _analyze_links(self, results: List[Dict]) -> Dict:
        all_links = []
        for result in results:
            if result.get('links'):
                all_links.extend(result['links'])
        if not all_links:
            return {'internal_links': {}, 'external_domains': {}, 'common_anchors': {}, 'file_types': {}}
        df = pd.DataFrame(all_links)
        return {
            'internal_links': df[df['type'] == 'internal']['url'].value_counts().head(20).to_dict(),
            'external_domains': df[df['type'] == 'external']['url'].apply(lambda x: urlparse(x).netloc).value_counts().head(10).to_dict(),
            'common_anchors': df['anchor'].value_counts().head(10).to_dict(),
            'file_types': df['file_type'].value_counts().to_dict()
        }

    def _generate_seo_recommendations(self, results: List[Dict]) -> List[str]:
        successful = [r for r in results if r.get('status') == 'success']
        if not successful:
            return ["No se pudo analizar ningún contenido exitosamente"]
        recs = []
        missing_titles = sum(1 for r in successful if not r.get('metadata', {}).get('title'))
        if missing_titles:
            recs.append(f"📌 Añadir títulos a {missing_titles} páginas")
        short_descriptions = sum(1 for r in successful if not r.get('metadata', {}).get('description'))
        if short_descriptions:
            recs.append(f"📌 Añadir meta descripciones a {short_descriptions} páginas")
        short_content = sum(1 for r in successful if r.get('word_count', 0) < 300)
        if short_content:
            recs.append(f"📝 Ampliar contenido en {short_content} páginas (menos de 300 palabras)")
        all_links = [link for r in results for link in r.get('links', [])]
        if all_links:
            df_links = pd.DataFrame(all_links)
            internal_links = df_links[df_links['type'] == 'internal']
            if len(internal_links) > 100:
                recs.append(f"🔗 Optimizar estructura de enlaces internos ({len(internal_links)} enlaces)")
        return recs if recs else ["✅ No se detectaron problemas críticos de SEO"]

    def plot_internal_links(self, links_data: Dict) -> Any:
        internal_links = links_data.get('internal_links', {})
        fig, ax = plt.subplots()
        if not internal_links:
            ax.text(0.5, 0.5, 'No hay enlaces internos', ha='center', va='center', transform=ax.transAxes)
            ax.axis('off')
        else:
            names = list(internal_links.keys())
            counts = list(internal_links.values())
            ax.barh(names, counts)
            ax.set_xlabel("Cantidad de enlaces")
            ax.set_title("Top 20 Enlaces Internos")
            plt.tight_layout()
        return fig