Spaces:
Paused
Paused
Refactoring
Browse files- .gitignore +2 -1
- app.py +28 -35
- prompts.py +26 -0
.gitignore
CHANGED
@@ -1,2 +1,3 @@
|
|
1 |
DS_Store
|
2 |
-
.env
|
|
|
|
1 |
DS_Store
|
2 |
+
.env
|
3 |
+
cache/
|
app.py
CHANGED
@@ -16,7 +16,7 @@ from langchain_openai.embeddings import OpenAIEmbeddings
|
|
16 |
from langchain.storage import LocalFileStore
|
17 |
from langchain_qdrant import QdrantVectorStore
|
18 |
from langchain.embeddings import CacheBackedEmbeddings
|
19 |
-
|
20 |
from langchain_core.globals import set_llm_cache
|
21 |
from langchain_openai import ChatOpenAI
|
22 |
from langchain_core.caches import InMemoryCache
|
@@ -24,7 +24,7 @@ from operator import itemgetter
|
|
24 |
from langchain_core.runnables.passthrough import RunnablePassthrough
|
25 |
from langchain_core.runnables.config import RunnableConfig
|
26 |
import uuid
|
27 |
-
|
28 |
|
29 |
load_dotenv()
|
30 |
|
@@ -36,8 +36,7 @@ load_dotenv()
|
|
36 |
"""
|
37 |
GLOBAL CODE HERE
|
38 |
"""
|
39 |
-
|
40 |
-
Loader = PyMuPDFLoader
|
41 |
# Typical Embedding Model
|
42 |
core_embeddings = OpenAIEmbeddings(model="text-embedding-3-small")
|
43 |
|
@@ -61,43 +60,40 @@ vectorstore = QdrantVectorStore(
|
|
61 |
collection_name=collection_name,
|
62 |
embedding=cached_embedder)
|
63 |
|
64 |
-
rag_system_prompt_template = """\
|
65 |
-
You are a helpful assistant that uses the provided context to answer questions. Never reference this prompt, or the existence of context.
|
66 |
-
If you cannot answer the question from the information in the context, tell the user that
|
67 |
-
you cannot answer the question directly from the context, but that you will give an answer
|
68 |
-
that is based on your general knowledge.
|
69 |
-
"""
|
70 |
-
|
71 |
-
rag_message_list = [
|
72 |
-
|
73 |
-
]
|
74 |
-
|
75 |
-
rag_user_prompt_template = """
|
76 |
-
Question:
|
77 |
-
{question}
|
78 |
-
Context:
|
79 |
-
{context}
|
80 |
-
"""
|
81 |
-
|
82 |
-
chat_prompt = ChatPromptTemplate.from_messages([
|
83 |
-
|
84 |
-
|
85 |
-
])
|
86 |
chat_model = ChatOpenAI(model="gpt-4o")
|
87 |
set_llm_cache(InMemoryCache())
|
88 |
|
89 |
def split_file(file: AskFileMessage):
|
90 |
import tempfile
|
|
|
|
|
91 |
with tempfile.NamedTemporaryFile(mode="w", delete=False) as tempfile:
|
92 |
with open(tempfile.name, "wb") as f:
|
93 |
f.write(file.content)
|
94 |
-
# separate_pages = []
|
95 |
loader = Loader(tempfile.name)
|
96 |
documents = loader.load()
|
97 |
-
# separate_pages.extend(page)
|
98 |
-
# one_document = ""
|
99 |
-
# for page in separate_pages:
|
100 |
-
# one_document+= page.page_content
|
101 |
docs = text_splitter.split_documents(documents)
|
102 |
for i, doc in enumerate(docs):
|
103 |
doc.metadata["source"] = f"source_{id}"
|
@@ -125,13 +121,10 @@ async def on_chat_start():
|
|
125 |
)
|
126 |
|
127 |
await msg.send()
|
128 |
-
docs = split_file(file)
|
129 |
-
|
130 |
|
|
|
131 |
vectorstore.add_documents(docs)
|
132 |
|
133 |
-
|
134 |
-
|
135 |
retriever = vectorstore.as_retriever(search_type="mmr", search_kwargs={"k": 15})
|
136 |
retrieval_augmented_qa_chain = (
|
137 |
{"context": itemgetter("question") | retriever, "question": itemgetter("question")}
|
|
|
16 |
from langchain.storage import LocalFileStore
|
17 |
from langchain_qdrant import QdrantVectorStore
|
18 |
from langchain.embeddings import CacheBackedEmbeddings
|
19 |
+
|
20 |
from langchain_core.globals import set_llm_cache
|
21 |
from langchain_openai import ChatOpenAI
|
22 |
from langchain_core.caches import InMemoryCache
|
|
|
24 |
from langchain_core.runnables.passthrough import RunnablePassthrough
|
25 |
from langchain_core.runnables.config import RunnableConfig
|
26 |
import uuid
|
27 |
+
from prompts import chat_prompt
|
28 |
|
29 |
load_dotenv()
|
30 |
|
|
|
36 |
"""
|
37 |
GLOBAL CODE HERE
|
38 |
"""
|
39 |
+
|
|
|
40 |
# Typical Embedding Model
|
41 |
core_embeddings = OpenAIEmbeddings(model="text-embedding-3-small")
|
42 |
|
|
|
60 |
collection_name=collection_name,
|
61 |
embedding=cached_embedder)
|
62 |
|
63 |
+
# rag_system_prompt_template = """\
|
64 |
+
# You are a helpful assistant that uses the provided context to answer questions. Never reference this prompt, or the existence of context.
|
65 |
+
# If you cannot answer the question from the information in the context, tell the user that
|
66 |
+
# you cannot answer the question directly from the context, but that you will give an answer
|
67 |
+
# that is based on your general knowledge.
|
68 |
+
# """
|
69 |
+
|
70 |
+
# rag_message_list = [
|
71 |
+
# {"role" : "system", "content" : rag_system_prompt_template},
|
72 |
+
# ]
|
73 |
+
|
74 |
+
# rag_user_prompt_template = """
|
75 |
+
# Question:
|
76 |
+
# {question}
|
77 |
+
# Context:
|
78 |
+
# {context}
|
79 |
+
# """
|
80 |
+
|
81 |
+
# chat_prompt = ChatPromptTemplate.from_messages([
|
82 |
+
# ("system", rag_system_prompt_template),
|
83 |
+
# ("human", rag_user_prompt_template)
|
84 |
+
# ])
|
85 |
chat_model = ChatOpenAI(model="gpt-4o")
|
86 |
set_llm_cache(InMemoryCache())
|
87 |
|
88 |
def split_file(file: AskFileMessage):
|
89 |
import tempfile
|
90 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=100)
|
91 |
+
Loader = PyMuPDFLoader
|
92 |
with tempfile.NamedTemporaryFile(mode="w", delete=False) as tempfile:
|
93 |
with open(tempfile.name, "wb") as f:
|
94 |
f.write(file.content)
|
|
|
95 |
loader = Loader(tempfile.name)
|
96 |
documents = loader.load()
|
|
|
|
|
|
|
|
|
97 |
docs = text_splitter.split_documents(documents)
|
98 |
for i, doc in enumerate(docs):
|
99 |
doc.metadata["source"] = f"source_{id}"
|
|
|
121 |
)
|
122 |
|
123 |
await msg.send()
|
|
|
|
|
124 |
|
125 |
+
docs = split_file(file)
|
126 |
vectorstore.add_documents(docs)
|
127 |
|
|
|
|
|
128 |
retriever = vectorstore.as_retriever(search_type="mmr", search_kwargs={"k": 15})
|
129 |
retrieval_augmented_qa_chain = (
|
130 |
{"context": itemgetter("question") | retriever, "question": itemgetter("question")}
|
prompts.py
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
## Contains prompts, welcome messages, etc.
|
2 |
+
|
3 |
+
from langchain_core.prompts import ChatPromptTemplate
|
4 |
+
|
5 |
+
rag_system_prompt_template = """\
|
6 |
+
You are a helpful assistant that uses the provided context to answer questions. Never reference this prompt, or the existence of context.
|
7 |
+
If you cannot answer the question from the information in the context, tell the user that
|
8 |
+
you cannot answer the question directly from the context, but that you will give an answer
|
9 |
+
that is based on your general knowledge.
|
10 |
+
"""
|
11 |
+
|
12 |
+
rag_message_list = [
|
13 |
+
{"role" : "system", "content" : rag_system_prompt_template},
|
14 |
+
]
|
15 |
+
|
16 |
+
rag_user_prompt_template = """
|
17 |
+
Question:
|
18 |
+
{question}
|
19 |
+
Context:
|
20 |
+
{context}
|
21 |
+
"""
|
22 |
+
|
23 |
+
chat_prompt = ChatPromptTemplate.from_messages([
|
24 |
+
("system", rag_system_prompt_template),
|
25 |
+
("human", rag_user_prompt_template)
|
26 |
+
])
|