Spaces:
Paused
Paused
""" | |
IMPORTS HERE | |
""" | |
import chainlit as cl | |
from qdrant_client import QdrantClient | |
from qdrant_client.http.models import Distance, VectorParams | |
from langchain_qdrant import QdrantVectorStore | |
from operator import itemgetter | |
from langchain_core.runnables.passthrough import RunnablePassthrough | |
from langchain_core.runnables.config import RunnableConfig | |
import uuid | |
from prompts import chat_prompt | |
from handle_files import split_file | |
from models import chat_model, cached_embedder | |
""" | |
GLOBAL CODE HERE | |
""" | |
# Typical QDrant Client Set-up | |
collection_name = f"pdf_to_parse_{uuid.uuid4()}" | |
client = QdrantClient(":memory:") | |
client.create_collection( | |
collection_name=collection_name, | |
vectors_config=VectorParams(size=1536, distance=Distance.COSINE), | |
) | |
# Typical QDrant Vector Store Set-up | |
vectorstore = QdrantVectorStore( | |
client=client, | |
collection_name=collection_name, | |
embedding=cached_embedder) | |
### On Chat Start (Session Start) Section ### | |
async def on_chat_start(): | |
""" SESSION SPECIFIC CODE HERE """ | |
files = None | |
# Wait for the user to upload a file | |
while files == None: | |
files = await cl.AskFileMessage( | |
content="Please upload a PDF File file to begin!", | |
accept=["application/pdf"], | |
max_size_mb=20, | |
timeout=180, | |
).send() | |
file = files[0] | |
msg = cl.Message( | |
content=f"Processing `{file.name}`..." | |
) | |
await msg.send() | |
docs = split_file(file) | |
vectorstore.add_documents(docs) | |
retriever = vectorstore.as_retriever(search_type="mmr", search_kwargs={"k": 15}) | |
retrieval_augmented_qa_chain = ( | |
{"context": itemgetter("question") | retriever, "question": itemgetter("question")} | |
| RunnablePassthrough.assign(context=itemgetter("context")) | |
| chat_prompt | chat_model | |
) | |
msg.content = f"Processing `{file.name}` done. You can now ask questions!" | |
await msg.send() | |
cl.user_session.set("chain", retrieval_augmented_qa_chain) | |
# ### Rename Chains ### | |
def rename(orig_author: str): | |
""" RENAME CODE HERE """ | |
rename_dict = {"ChatOpenAI": "the Generator ...", "VectorStoreRetriever" : "the Retriever"} | |
return rename_dict.get(orig_author, orig_author) | |
### On Message Section ### | |
async def main(message: cl.Message): | |
""" | |
MESSAGE CODE HERE | |
""" | |
chain = cl.user_session.get("chain") | |
msg = cl.Message(content="") | |
async for stream_response in chain.astream( | |
{"question":message.content}, | |
config=RunnableConfig(callbacks=[cl.LangchainCallbackHandler()]) | |
): | |
await msg.stream_token(stream_response.content) | |
await msg.send() |