xhluca
commited on
Commit
·
51c2a5b
1
Parent(s):
fed44d5
add initial files
Browse files- .gitignore +1 -0
- demo.py +560 -0
- requirements.txt +3 -0
.gitignore
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
trajectories/
|
demo.py
ADDED
@@ -0,0 +1,560 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import ast
|
2 |
+
import pyparsing as pp
|
3 |
+
from dataclasses import dataclass
|
4 |
+
from typing import Any
|
5 |
+
import json
|
6 |
+
from pathlib import Path
|
7 |
+
import logging
|
8 |
+
|
9 |
+
import orjson
|
10 |
+
from PIL import Image
|
11 |
+
import gradio as gr
|
12 |
+
import numpy as np
|
13 |
+
|
14 |
+
logger = logging.getLogger(__name__)
|
15 |
+
|
16 |
+
benchmarks_dict = {
|
17 |
+
"assistantbench": "AssistantBench",
|
18 |
+
"visualwebarena": "VisualWebArena",
|
19 |
+
"webarena": "WebArena",
|
20 |
+
"workarena": "WorkArena",
|
21 |
+
}
|
22 |
+
|
23 |
+
tasks_dict = {
|
24 |
+
"assistantbench": "assistantbench.improved.validation",
|
25 |
+
"visualwebarena": "visualwebarena.resized",
|
26 |
+
"webarena": "webarena",
|
27 |
+
"workarena": "workarena.servicenow",
|
28 |
+
}
|
29 |
+
|
30 |
+
agents_dict = {
|
31 |
+
"GenericAgent-anthropic_claude-3.7-sonnet": "Claude 3.7 Sonnet",
|
32 |
+
"GenericAgent-gpt-4o-2024-11-20": "GPT-4o",
|
33 |
+
"GenericAgent-meta-llama_Llama-3.3-70B-Instruct": "Llama-3.3 70B",
|
34 |
+
"GenericAgent-Qwen_Qwen2.5-VL-72B-Instruct": "Qwen2.5-VL 72B",
|
35 |
+
}
|
36 |
+
|
37 |
+
judges_dict = {
|
38 |
+
"aer": "AER-C",
|
39 |
+
"nnetnav": "NNetNav",
|
40 |
+
"claude-3.7-sonnet-noaxtree": "Claude 3.7 Sonnet (Screen)",
|
41 |
+
"claude-3.7-sonnet-noscreen": "Claude 3.7 Sonnet (Axtree)",
|
42 |
+
"gpt-4o-noaxtree": "GPT-4o (Screen)",
|
43 |
+
"gpt-4o-noscreen": "GPT-4o (Axtree)",
|
44 |
+
"qwen-2.5-vl-noaxtree": "Qwen 2.5 VL (Screen)",
|
45 |
+
"qwen-2.5-vl-noscreen": "Qwen 2.5 VL (Axtree)",
|
46 |
+
"llama-3.3-70b-noscreen": "Llama 3.3 70B",
|
47 |
+
"functional": "Rule-based",
|
48 |
+
}
|
49 |
+
|
50 |
+
default_judges = [
|
51 |
+
"AER-C",
|
52 |
+
"NNetNav",
|
53 |
+
"Claude 3.7 Sonnet (Screen)",
|
54 |
+
"GPT-4o (Screen)",
|
55 |
+
"Qwen 2.5 VL (Screen)",
|
56 |
+
"Llama 3.3 70B",
|
57 |
+
]
|
58 |
+
|
59 |
+
benchmarks_inverse = {v: k for k, v in benchmarks_dict.items()}
|
60 |
+
agents_inverse = {v: k for k, v in agents_dict.items()}
|
61 |
+
tasks_inverse = {v: k for k, v in tasks_dict.items()}
|
62 |
+
judges_inverse = {v: k for k, v in judges_dict.items()}
|
63 |
+
|
64 |
+
|
65 |
+
@dataclass
|
66 |
+
class NamedArgument:
|
67 |
+
"""
|
68 |
+
Source: https://github.com/ServiceNow/BrowserGym/blob/c3336ef61781ce39166ee6a9551dbfc8fac32ddc/browsergym/core/src/browsergym/core/action/parsers.py#L9
|
69 |
+
"""
|
70 |
+
|
71 |
+
name: str
|
72 |
+
value: Any
|
73 |
+
|
74 |
+
def __repr__(self):
|
75 |
+
return f"{self.name}={repr(self.value)}"
|
76 |
+
|
77 |
+
|
78 |
+
def overlay_som(
|
79 |
+
screenshot: np.typing.ArrayLike,
|
80 |
+
extra_properties: dict,
|
81 |
+
fontsize: int = 12,
|
82 |
+
linewidth: int = 2,
|
83 |
+
tag_margin: int = 2,
|
84 |
+
):
|
85 |
+
"""
|
86 |
+
Source: https://github.com/ServiceNow/BrowserGym/blob/c3336ef61781ce39166ee6a9551dbfc8fac32ddc/browsergym/core/src/browsergym/utils/obs.py#L429
|
87 |
+
"""
|
88 |
+
from PIL import Image, ImageDraw, ImageFont
|
89 |
+
import math
|
90 |
+
|
91 |
+
img = Image.fromarray(screenshot).copy() # make a copy
|
92 |
+
img = img.convert(mode="RGBA")
|
93 |
+
draw = ImageDraw.Draw(img)
|
94 |
+
|
95 |
+
font = ImageFont.load_default(size=fontsize)
|
96 |
+
|
97 |
+
# Adapted from https://stackoverflow.com/questions/51908563/dotted-or-dashed-line-with-python-pillow/58885306#58885306
|
98 |
+
def linedashed(
|
99 |
+
draw: ImageDraw.Draw,
|
100 |
+
x0,
|
101 |
+
y0,
|
102 |
+
x1,
|
103 |
+
y1,
|
104 |
+
fill,
|
105 |
+
width,
|
106 |
+
dash_length=4,
|
107 |
+
nodash_length=8,
|
108 |
+
):
|
109 |
+
line_dx = x1 - x0 # delta x (can be negative)
|
110 |
+
line_dy = y1 - y0 # delta y (can be negative)
|
111 |
+
line_length = math.hypot(line_dx, line_dy) # line length (positive)
|
112 |
+
if line_length == 0:
|
113 |
+
return # Avoid division by zero in case the line length is 0
|
114 |
+
pixel_dx = line_dx / line_length # x add for 1px line length
|
115 |
+
pixel_dy = line_dy / line_length # y add for 1px line length
|
116 |
+
dash_start = 0
|
117 |
+
while dash_start < line_length:
|
118 |
+
dash_end = dash_start + dash_length
|
119 |
+
if dash_end > line_length:
|
120 |
+
dash_end = line_length
|
121 |
+
draw.line(
|
122 |
+
(
|
123 |
+
round(x0 + pixel_dx * dash_start),
|
124 |
+
round(y0 + pixel_dy * dash_start),
|
125 |
+
round(x0 + pixel_dx * dash_end),
|
126 |
+
round(y0 + pixel_dy * dash_end),
|
127 |
+
),
|
128 |
+
fill=fill,
|
129 |
+
width=width,
|
130 |
+
)
|
131 |
+
dash_start += dash_length + nodash_length
|
132 |
+
|
133 |
+
for bid, properties in extra_properties.items():
|
134 |
+
if properties["set_of_marks"] and properties["bbox"]:
|
135 |
+
x, y, width, height = properties["bbox"]
|
136 |
+
x0, y0 = x, y
|
137 |
+
x1, y1 = x + width, y + height
|
138 |
+
|
139 |
+
# skip small boxes
|
140 |
+
area = (x1 - x0) * (y1 - y0)
|
141 |
+
if area < 20:
|
142 |
+
logger.warning(
|
143 |
+
f'som overlay: skipping bid "{bid}" due to bbox too small (area={area})'
|
144 |
+
)
|
145 |
+
continue
|
146 |
+
|
147 |
+
# draw bounding box with dashed lines
|
148 |
+
linedashed(draw, x0, y0, x1, y0, fill=(0, 0, 0, 255), width=linewidth)
|
149 |
+
linedashed(draw, x1, y0, x1, y1, fill=(0, 0, 0, 255), width=linewidth)
|
150 |
+
linedashed(draw, x1, y1, x0, y1, fill=(0, 0, 0, 255), width=linewidth)
|
151 |
+
linedashed(draw, x0, y1, x0, y0, fill=(0, 0, 0, 255), width=linewidth)
|
152 |
+
|
153 |
+
# get text box size (left, top, right, bottom)
|
154 |
+
tag_box = font.getbbox(
|
155 |
+
bid,
|
156 |
+
)
|
157 |
+
|
158 |
+
# set tag size, including margins
|
159 |
+
tag_size = (
|
160 |
+
(tag_box[2] - tag_box[0] + 2 * (tag_margin + 1)),
|
161 |
+
(tag_box[3] - tag_box[1] + 2 * (tag_margin + 1)),
|
162 |
+
)
|
163 |
+
|
164 |
+
# create tag image with correct size and black background
|
165 |
+
tag_img = Image.new("RGBA", tag_size, "black")
|
166 |
+
tag_draw = ImageDraw.Draw(tag_img)
|
167 |
+
# write text with 1px horizontal margin
|
168 |
+
tag_draw.text(
|
169 |
+
(-tag_box[0] + tag_margin + 1, -tag_box[1] + tag_margin + 1),
|
170 |
+
bid,
|
171 |
+
font=font,
|
172 |
+
fill=(255, 255, 255, 255),
|
173 |
+
spacing=0,
|
174 |
+
)
|
175 |
+
tag_draw.rectangle(
|
176 |
+
(0, 0, tag_size[0] - 1, tag_size[1] - 1),
|
177 |
+
fill=None,
|
178 |
+
outline=(255, 255, 255, 255),
|
179 |
+
width=1,
|
180 |
+
)
|
181 |
+
|
182 |
+
# draw tag in the source image, upper left of the bounding box
|
183 |
+
tag_pos = (x + 0, y - tag_size[1] / 2 + 4)
|
184 |
+
tag_pos = list(map(round, tag_pos))
|
185 |
+
img.paste(tag_img, tag_pos)
|
186 |
+
|
187 |
+
# convert to RGB (3 channels)
|
188 |
+
img = img.convert(mode="RGB")
|
189 |
+
# convert to a numpy array
|
190 |
+
img = np.array(img)
|
191 |
+
|
192 |
+
return img
|
193 |
+
|
194 |
+
|
195 |
+
def apply_overlay_to_image(im, step, highlevel_action_parser=None):
|
196 |
+
action = step.get("action", None)
|
197 |
+
if action is None:
|
198 |
+
return im
|
199 |
+
|
200 |
+
# get the element from the action string
|
201 |
+
element = get_element_from_action_str(
|
202 |
+
action, highlevel_action_parser=highlevel_action_parser
|
203 |
+
)
|
204 |
+
if element is None:
|
205 |
+
return im
|
206 |
+
|
207 |
+
# overlay the extra properties on the image
|
208 |
+
extra_properties = step.get("extra_element_properties", {})
|
209 |
+
if element not in extra_properties:
|
210 |
+
return im
|
211 |
+
|
212 |
+
# get the extra properties for the element
|
213 |
+
extra_properties = {element: extra_properties[element]}
|
214 |
+
|
215 |
+
im_arr = np.array(im)
|
216 |
+
im_overlayed = overlay_som(im_arr, extra_properties=extra_properties)
|
217 |
+
im = Image.fromarray(im_overlayed)
|
218 |
+
|
219 |
+
return im
|
220 |
+
|
221 |
+
|
222 |
+
def _build_highlevel_action_parser() -> pp.ParserElement:
|
223 |
+
"""
|
224 |
+
SOURCE: https://github.com/ServiceNow/BrowserGym/blob/c3336ef61781ce39166ee6a9551dbfc8fac32ddc/browsergym/core/src/browsergym/core/action/parsers.py#L17
|
225 |
+
---------------
|
226 |
+
|
227 |
+
Returns:
|
228 |
+
An action parser that accepts Python-like function calls with string, number, list or dict literals as arguments.
|
229 |
+
Example:
|
230 |
+
func("a", 42, None, True, [2, 4, "s"], {"a_key": "a_value"}, )
|
231 |
+
The parser is loose and accepts multi-line or single-line combinations af calls.
|
232 |
+
Example:
|
233 |
+
func() func()
|
234 |
+
\tfunc()
|
235 |
+
Python comments are ignored.
|
236 |
+
Example:
|
237 |
+
# this is a comment
|
238 |
+
func() # this function call will be parsed
|
239 |
+
# func() # this one will not
|
240 |
+
The parser will return a list of (function_name, function_args) tuples, one for each function call in the input.
|
241 |
+
The parser will raise exceptions
|
242 |
+
|
243 |
+
"""
|
244 |
+
|
245 |
+
def make_keyword(kwd_str, kwd_value):
|
246 |
+
return pp.Keyword(kwd_str).set_parse_action(pp.replace_with(kwd_value))
|
247 |
+
|
248 |
+
TRUE = make_keyword("True", True)
|
249 |
+
FALSE = make_keyword("False", False)
|
250 |
+
NONE = make_keyword("None", None)
|
251 |
+
|
252 |
+
LBRACK, RBRACK, LBRACE, RBRACE, LPAREN, RPAREN, COLON = map(pp.Suppress, "[]{}():")
|
253 |
+
|
254 |
+
def literal_eval(toks):
|
255 |
+
return ast.literal_eval(toks[0])
|
256 |
+
|
257 |
+
string = pp.python_quoted_string().set_parse_action(literal_eval)
|
258 |
+
number = pp.pyparsing_common.number()
|
259 |
+
dict = pp.Forward().set_name("dict") # will be defined later
|
260 |
+
list = pp.Forward().set_name("list") # will be defined later
|
261 |
+
_tuple = pp.Forward().set_name("tuple") # will be defined later
|
262 |
+
element = (string | number | dict | list | _tuple | TRUE | FALSE | NONE).set_name(
|
263 |
+
"element"
|
264 |
+
)
|
265 |
+
|
266 |
+
list_items = pp.DelimitedList(element, allow_trailing_delim=True).set_name(None)
|
267 |
+
list << pp.Group(LBRACK + pp.Optional(list_items) + RBRACK, aslist=True)
|
268 |
+
_tuple << pp.Group(
|
269 |
+
LPAREN + pp.Optional(list_items) + RPAREN, aslist=True
|
270 |
+
).set_parse_action(lambda tokens: tuple(tokens[0]))
|
271 |
+
|
272 |
+
dict_item = pp.Group(string + COLON + element, aslist=True).set_name("dict item")
|
273 |
+
dict_items = pp.DelimitedList(dict_item, allow_trailing_delim=True).set_name(None)
|
274 |
+
dict << pp.Dict(LBRACE + pp.Optional(dict_items) + RBRACE, asdict=True)
|
275 |
+
|
276 |
+
arg = element
|
277 |
+
list_args = pp.DelimitedList(arg, allow_trailing_delim=True).set_name(None)
|
278 |
+
named_arg = (
|
279 |
+
pp.pyparsing_common.identifier() + pp.Literal("=") + element
|
280 |
+
).set_parse_action(lambda tokens: NamedArgument(name=tokens[0], value=tokens[2]))
|
281 |
+
list_named_args = pp.DelimitedList(named_arg, allow_trailing_delim=True).set_name(
|
282 |
+
None
|
283 |
+
)
|
284 |
+
function_call = pp.pyparsing_common.identifier() + pp.Group(
|
285 |
+
LPAREN + pp.Optional(list_args) + pp.Optional(list_named_args) + RPAREN,
|
286 |
+
aslist=True,
|
287 |
+
)
|
288 |
+
|
289 |
+
multiple_function_calls = pp.DelimitedList(pp.Group(function_call), delim="")
|
290 |
+
multiple_function_calls.ignore(pp.python_style_comment())
|
291 |
+
|
292 |
+
parser = multiple_function_calls
|
293 |
+
|
294 |
+
return parser
|
295 |
+
|
296 |
+
|
297 |
+
def replace_string_content(s, start="https://", end=".png", replacement="<URL>"):
|
298 |
+
# erase everything between start and end
|
299 |
+
# example: https://www.example.com/image.png
|
300 |
+
# becomes: replaced
|
301 |
+
|
302 |
+
# find the start and end indices
|
303 |
+
start_index = s.find(start)
|
304 |
+
end_index = s.find(end, start_index) + len(end)
|
305 |
+
if start_index == -1 or end_index == -1:
|
306 |
+
return s
|
307 |
+
# replace the content
|
308 |
+
return s[:start_index] + replacement + s[end_index:]
|
309 |
+
|
310 |
+
|
311 |
+
def infer_task_name(base_traj_dir, benchmark, agent):
|
312 |
+
agent_full = agents_inverse[agent]
|
313 |
+
benchmark_full = benchmarks_inverse[benchmark]
|
314 |
+
traj_dir = Path(
|
315 |
+
base_traj_dir,
|
316 |
+
benchmark_full,
|
317 |
+
agent_full,
|
318 |
+
f"{agent_full}_on_{benchmark_full}",
|
319 |
+
)
|
320 |
+
traj_dir = traj_dir.resolve()
|
321 |
+
if not traj_dir.exists():
|
322 |
+
raise FileNotFoundError(f"Trajectory directory not found: {traj_dir}")
|
323 |
+
# get one json file in the directory
|
324 |
+
json_files = list(traj_dir.glob("*.json"))
|
325 |
+
if not json_files:
|
326 |
+
raise FileNotFoundError(f"No JSON files found in: {traj_dir}")
|
327 |
+
|
328 |
+
# get the first json file
|
329 |
+
json_file = json_files[0]
|
330 |
+
# task_name is the part of the filename before the last dot
|
331 |
+
task_name = json_file.stem.split(".")[:-1]
|
332 |
+
# join the task name with the benchmark name
|
333 |
+
task_name = ".".join(task_name)
|
334 |
+
|
335 |
+
return task_name
|
336 |
+
|
337 |
+
|
338 |
+
def get_element_from_action_str(action_str, highlevel_action_parser=None):
|
339 |
+
import pyparsing
|
340 |
+
|
341 |
+
if highlevel_action_parser is not None:
|
342 |
+
highlevel_action_parser = _build_highlevel_action_parser()
|
343 |
+
|
344 |
+
try:
|
345 |
+
function_calls = highlevel_action_parser.parse_string(
|
346 |
+
action_str, parse_all=True
|
347 |
+
)
|
348 |
+
action_function, action_args = function_calls[0]
|
349 |
+
except pyparsing.exceptions.ParseException:
|
350 |
+
action_function = "UNKNOWN"
|
351 |
+
action_args = []
|
352 |
+
|
353 |
+
if len(action_args) > 0:
|
354 |
+
# first argument is the element
|
355 |
+
element = action_args[0]
|
356 |
+
else:
|
357 |
+
element = None
|
358 |
+
|
359 |
+
return element
|
360 |
+
|
361 |
+
|
362 |
+
def get_trajectory_path(base_traj_dir, benchmark, agent, task_id):
|
363 |
+
agent_full = agents_inverse[agent]
|
364 |
+
benchmark_full = benchmarks_inverse[benchmark]
|
365 |
+
task_full = tasks_dict[benchmark_full]
|
366 |
+
|
367 |
+
traj_path = Path(
|
368 |
+
base_traj_dir,
|
369 |
+
benchmark_full,
|
370 |
+
agent_full,
|
371 |
+
f"{agent_full}_on_{task_full}",
|
372 |
+
f"{task_full}.{task_id}.json",
|
373 |
+
)
|
374 |
+
traj_path = traj_path.resolve()
|
375 |
+
|
376 |
+
if not traj_path.exists():
|
377 |
+
raise FileNotFoundError(f"Trajectory file not found: {traj_path}")
|
378 |
+
return traj_path
|
379 |
+
|
380 |
+
|
381 |
+
def get_judgment_path(base_judgments_dir, benchmark, agent, judge, task_id):
|
382 |
+
agent_full = agents_inverse[agent]
|
383 |
+
benchmark_full = benchmarks_inverse[benchmark]
|
384 |
+
task_full = tasks_dict[benchmark_full]
|
385 |
+
judge_full = judges_inverse[judge]
|
386 |
+
|
387 |
+
judgment_path = Path(
|
388 |
+
base_judgments_dir,
|
389 |
+
benchmark_full,
|
390 |
+
agent_full,
|
391 |
+
judge_full,
|
392 |
+
f"{task_full}.{task_id}.json",
|
393 |
+
)
|
394 |
+
judgment_path = judgment_path.resolve()
|
395 |
+
|
396 |
+
if not judgment_path.exists():
|
397 |
+
raise FileNotFoundError(f"Judgment file not found: {judgment_path}")
|
398 |
+
|
399 |
+
return judgment_path
|
400 |
+
|
401 |
+
|
402 |
+
def list_benchmarks():
|
403 |
+
return list(benchmarks_dict.values())
|
404 |
+
|
405 |
+
|
406 |
+
def list_agents(base_traj_dir, benchmark):
|
407 |
+
# show only the agents that are in the base_traj_dir
|
408 |
+
benchmark_full = benchmarks_inverse[benchmark]
|
409 |
+
traj_dir = Path(base_traj_dir, benchmark_full)
|
410 |
+
traj_dir = traj_dir.resolve()
|
411 |
+
if not traj_dir.exists():
|
412 |
+
raise FileNotFoundError(f"Trajectory directory not found: {traj_dir}")
|
413 |
+
# list all dirs that are not hidden
|
414 |
+
subdirs = [
|
415 |
+
f for f in traj_dir.iterdir() if f.is_dir() and not f.name.startswith(".")
|
416 |
+
]
|
417 |
+
agent_names = [agents_dict[s.name] for s in subdirs if s.name in agents_dict]
|
418 |
+
|
419 |
+
# sort the agent names
|
420 |
+
agent_names.sort()
|
421 |
+
|
422 |
+
return agent_names
|
423 |
+
|
424 |
+
|
425 |
+
def list_task_ids(base_traj_dir, benchmark, agent):
|
426 |
+
# example: trajectories/cleaned/workarena/GenericAgent-anthropic_claude-3.7-sonnet/GenericAgent-anthropic_claude-3.7-sonnet_on_workarena.servicenow
|
427 |
+
agent_full = agents_inverse[agent]
|
428 |
+
benchmark_full = benchmarks_inverse[benchmark]
|
429 |
+
task_full = tasks_dict[benchmark_full]
|
430 |
+
|
431 |
+
traj_dir = Path(
|
432 |
+
base_traj_dir,
|
433 |
+
benchmark_full,
|
434 |
+
agent_full,
|
435 |
+
f"{agent_full}_on_{task_full}",
|
436 |
+
)
|
437 |
+
traj_dir = traj_dir.resolve()
|
438 |
+
|
439 |
+
if not traj_dir.exists():
|
440 |
+
raise FileNotFoundError(f"Trajectory directory not found: {traj_dir}")
|
441 |
+
|
442 |
+
task_ids = [f.stem.split(".")[-1] for f in traj_dir.glob("*.json")]
|
443 |
+
|
444 |
+
# sort as integer if possible, otherwise as string
|
445 |
+
task_ids.sort(key=lambda x: int(x) if x.isdigit() else x)
|
446 |
+
|
447 |
+
return task_ids
|
448 |
+
|
449 |
+
|
450 |
+
def get_message_from_judgment(judgment):
|
451 |
+
try:
|
452 |
+
output = judgment['response']['choices'][0]['message']['content']
|
453 |
+
except:
|
454 |
+
output = "No judgment found"
|
455 |
+
return output
|
456 |
+
|
457 |
+
def get_message_from_rule_based(judgment):
|
458 |
+
try:
|
459 |
+
r = judgment['trajectory_info']['summary_info']['cum_reward']
|
460 |
+
output = "Success" if r > 0.5 else "Failure"
|
461 |
+
except:
|
462 |
+
output = "No judgment found"
|
463 |
+
|
464 |
+
return output
|
465 |
+
|
466 |
+
|
467 |
+
base_traj_dir = "trajectories/cleaned"
|
468 |
+
base_screenshot_dir = "trajectories/screenshots"
|
469 |
+
base_judgments_dir = "trajectories/judgments"
|
470 |
+
|
471 |
+
base_traj_dir = Path(base_traj_dir)
|
472 |
+
base_screenshot_dir = Path(base_screenshot_dir)
|
473 |
+
|
474 |
+
hl_action_parser = _build_highlevel_action_parser()
|
475 |
+
|
476 |
+
with gr.Blocks(title="AgentRewardBench Demo") as demo, gr.Row():
|
477 |
+
with gr.Column(scale=4):
|
478 |
+
benchmark_default = "WebArena"
|
479 |
+
benchmark_dd = gr.Dropdown(
|
480 |
+
label="Benchmark", choices=list_benchmarks(), value=benchmark_default
|
481 |
+
)
|
482 |
+
|
483 |
+
agents = list_agents(base_traj_dir, benchmark_default)
|
484 |
+
model_dd = gr.Dropdown(label="Agent", choices=agents, value=agents[0])
|
485 |
+
|
486 |
+
task_ids = list_task_ids(base_traj_dir, benchmark_default, agents[0])
|
487 |
+
task_id_dd = gr.Dropdown(label="Task ID", choices=task_ids, value=task_ids[0])
|
488 |
+
|
489 |
+
@benchmark_dd.change(inputs=[benchmark_dd], outputs=[model_dd])
|
490 |
+
def update_agents(benchmark):
|
491 |
+
agents = list_agents(base_traj_dir, benchmark)
|
492 |
+
return gr.Dropdown(label="Agent", choices=agents, value=agents[0])
|
493 |
+
|
494 |
+
@model_dd.change(inputs=[benchmark_dd, model_dd], outputs=[task_id_dd])
|
495 |
+
def update_task_ids(benchmark, agent):
|
496 |
+
task_ids = list_task_ids(base_traj_dir, benchmark, agent)
|
497 |
+
|
498 |
+
return gr.Dropdown(choices=task_ids, value=task_ids[0])
|
499 |
+
|
500 |
+
with gr.Column(scale=8):
|
501 |
+
@gr.render(inputs=[benchmark_dd, model_dd, task_id_dd])
|
502 |
+
def render_trajectory(benchmark, agent, task_id):
|
503 |
+
traj_path = get_trajectory_path(base_traj_dir, benchmark, agent, task_id)
|
504 |
+
with open(traj_path, "rb") as f:
|
505 |
+
traj = orjson.loads(f.read())
|
506 |
+
|
507 |
+
goal = replace_string_content(traj["goal"])
|
508 |
+
|
509 |
+
gr.Textbox(label="Goal", value=goal, visible=True)
|
510 |
+
|
511 |
+
for step in traj["steps"]:
|
512 |
+
num = step["num"]
|
513 |
+
action = step["action"]
|
514 |
+
reasoning = step["reasoning"]
|
515 |
+
screenshot_path = step["screenshot_path"]
|
516 |
+
|
517 |
+
gr.Markdown(f"# Step {num}")
|
518 |
+
with gr.Group():
|
519 |
+
im = Image.open(screenshot_path)
|
520 |
+
im = apply_overlay_to_image(
|
521 |
+
im, step, highlevel_action_parser=hl_action_parser
|
522 |
+
)
|
523 |
+
format_ = "webp" if im.format is None else im.format
|
524 |
+
gr.Image(im, label="Screenshot", format=format_)
|
525 |
+
if reasoning is not None:
|
526 |
+
gr.Textbox(reasoning, label="Reasoning", lines=4)
|
527 |
+
if action is not None:
|
528 |
+
gr.Textbox(action, label="Action", lines=2)
|
529 |
+
|
530 |
+
# multi-choices dropdown for judges
|
531 |
+
judge_dd = gr.Dropdown(
|
532 |
+
label="Judges",
|
533 |
+
choices=list(judges_dict.values()),
|
534 |
+
multiselect=True,
|
535 |
+
value=default_judges,
|
536 |
+
)
|
537 |
+
|
538 |
+
@gr.render(inputs=[benchmark_dd, model_dd, task_id_dd, judge_dd])
|
539 |
+
def render_judge(benchmark, agent, task_id, judge_choices):
|
540 |
+
# load judgments
|
541 |
+
for judge in judges_dict.values():
|
542 |
+
if judge not in judge_choices:
|
543 |
+
continue
|
544 |
+
|
545 |
+
judgment_path = get_judgment_path(
|
546 |
+
base_judgments_dir, benchmark, agent, judge, task_id
|
547 |
+
)
|
548 |
+
if not judgment_path.exists():
|
549 |
+
continue
|
550 |
+
|
551 |
+
with open(judgment_path, "rb") as f:
|
552 |
+
judgment = orjson.loads(f.read())
|
553 |
+
if judge == "Rule-based":
|
554 |
+
msg = get_message_from_rule_based(judgment)
|
555 |
+
else:
|
556 |
+
msg = get_message_from_judgment(judgment)
|
557 |
+
|
558 |
+
gr.Textbox(label=judge, value=msg, lines=4)
|
559 |
+
|
560 |
+
demo.launch()
|
requirements.txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
tqdm
|
2 |
+
orjson
|
3 |
+
Pillow
|