|
from PIL import Image |
|
import requests |
|
import gradio as gr |
|
|
|
gr.load("models/Salesforce/blip-image-captioning-large").launch() |
|
from transformers import BlipProcessor, BlipForConditionalGeneration |
|
|
|
model_id = Salesforceblip-image-captioning-large |
|
model = BlipForConditionalGeneration.from_pretrained(model_id) |
|
processor = BlipProcessor.from_pretrained(model_id) |
|
|
|
def launch(input): |
|
image = Image.open(requests.get(input, stream=True).raw).convert('RGB') |
|
inputs = processor(image, return_tensors=pt) |
|
out = model.generate(inputs) |
|
return processor.decode(out[0], skip_special_tokens=True) |
|
|
|
iface = gr.Interface(launch, inputs=text, outputs=text) |
|
iface.launch() |