Spaces:
Build error
Build error
First commit
Browse files
app.py
ADDED
@@ -0,0 +1,114 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from fastapi import FastAPI, HTTPException
|
2 |
+
from pydantic import BaseModel
|
3 |
+
from huggingface_hub import InferenceClient
|
4 |
+
|
5 |
+
from langchain_core.messages import HumanMessage, AIMessage
|
6 |
+
from langgraph.checkpoint.memory import MemorySaver
|
7 |
+
from langgraph.graph import START, MessagesState, StateGraph
|
8 |
+
|
9 |
+
import os
|
10 |
+
from dotenv import load_dotenv
|
11 |
+
load_dotenv()
|
12 |
+
|
13 |
+
# HuggingFace token
|
14 |
+
HUGGINGFACE_TOKEN = os.environ.get("HUGGINGFACE_TOKEN", os.getenv("HUGGINGFACE_TOKEN"))
|
15 |
+
|
16 |
+
# Initialize the HuggingFace model
|
17 |
+
model = InferenceClient(
|
18 |
+
model="Qwen/Qwen2.5-72B-Instruct",
|
19 |
+
api_key=HUGGINGFACE_TOKEN
|
20 |
+
)
|
21 |
+
|
22 |
+
# Define the function that calls the model
|
23 |
+
def call_model(state: MessagesState):
|
24 |
+
"""
|
25 |
+
Call the model with the given messages
|
26 |
+
|
27 |
+
Args:
|
28 |
+
state: MessagesState
|
29 |
+
|
30 |
+
Returns:
|
31 |
+
dict: A dictionary containing the generated text and the thread ID
|
32 |
+
"""
|
33 |
+
# Convert LangChain messages to HuggingFace format
|
34 |
+
hf_messages = []
|
35 |
+
for msg in state["messages"]:
|
36 |
+
if isinstance(msg, HumanMessage):
|
37 |
+
hf_messages.append({"role": "user", "content": msg.content})
|
38 |
+
elif isinstance(msg, AIMessage):
|
39 |
+
hf_messages.append({"role": "assistant", "content": msg.content})
|
40 |
+
|
41 |
+
# Call the API
|
42 |
+
response = model.chat_completion(
|
43 |
+
messages=hf_messages,
|
44 |
+
temperature=0.5,
|
45 |
+
max_tokens=64,
|
46 |
+
top_p=0.7
|
47 |
+
)
|
48 |
+
|
49 |
+
# Convert the response to LangChain format
|
50 |
+
ai_message = AIMessage(content=response.choices[0].message.content)
|
51 |
+
return {"messages": state["messages"] + [ai_message]}
|
52 |
+
|
53 |
+
# Define the graph
|
54 |
+
workflow = StateGraph(state_schema=MessagesState)
|
55 |
+
|
56 |
+
# Define the node in the graph
|
57 |
+
workflow.add_edge(START, "model")
|
58 |
+
workflow.add_node("model", call_model)
|
59 |
+
|
60 |
+
# Add memory
|
61 |
+
memory = MemorySaver()
|
62 |
+
graph_app = workflow.compile(checkpointer=memory)
|
63 |
+
|
64 |
+
# Define the data model for the request
|
65 |
+
class QueryRequest(BaseModel):
|
66 |
+
query: str
|
67 |
+
thread_id: str = "default"
|
68 |
+
|
69 |
+
# Create the FastAPI application
|
70 |
+
app = FastAPI(title="LangChain FastAPI", description="API to generate text using LangChain and LangGraph")
|
71 |
+
|
72 |
+
# Welcome endpoint
|
73 |
+
@app.get("/")
|
74 |
+
async def api_home():
|
75 |
+
"""Welcome endpoint"""
|
76 |
+
return {"detail": "Welcome to FastAPI, Langchain, Docker tutorial"}
|
77 |
+
|
78 |
+
# Generate endpoint
|
79 |
+
@app.post("/generate")
|
80 |
+
async def generate(request: QueryRequest):
|
81 |
+
"""
|
82 |
+
Endpoint to generate text using the language model
|
83 |
+
|
84 |
+
Args:
|
85 |
+
request: QueryRequest
|
86 |
+
query: str
|
87 |
+
thread_id: str = "default"
|
88 |
+
|
89 |
+
Returns:
|
90 |
+
dict: A dictionary containing the generated text and the thread ID
|
91 |
+
"""
|
92 |
+
try:
|
93 |
+
# Configure the thread ID
|
94 |
+
config = {"configurable": {"thread_id": request.thread_id}}
|
95 |
+
|
96 |
+
# Create the input message
|
97 |
+
input_messages = [HumanMessage(content=request.query)]
|
98 |
+
|
99 |
+
# Invoke the graph
|
100 |
+
output = graph_app.invoke({"messages": input_messages}, config)
|
101 |
+
|
102 |
+
# Get the model response
|
103 |
+
response = output["messages"][-1].content
|
104 |
+
|
105 |
+
return {
|
106 |
+
"generated_text": response,
|
107 |
+
"thread_id": request.thread_id
|
108 |
+
}
|
109 |
+
except Exception as e:
|
110 |
+
raise HTTPException(status_code=500, detail=f"Error al generar texto: {str(e)}")
|
111 |
+
|
112 |
+
if __name__ == "__main__":
|
113 |
+
import uvicorn
|
114 |
+
uvicorn.run(app, host="0.0.0.0", port=7860)
|