File size: 6,911 Bytes
a73e772
 
 
 
664d175
a73e772
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
664d175
a73e772
 
 
 
 
 
 
 
 
 
 
664d175
a73e772
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
664d175
 
 
 
 
 
 
a73e772
 
 
 
 
 
664d175
 
 
 
 
 
 
a73e772
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
664d175
 
 
a73e772
 
 
 
 
 
 
 
 
 
 
664d175
 
 
 
 
 
a73e772
 
 
 
 
 
 
 
 
 
 
664d175
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a73e772
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
from fastapi import FastAPI, HTTPException
from pydantic import BaseModel
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
from functools import partial

from langchain_core.messages import HumanMessage, AIMessage
from langgraph.checkpoint.memory import MemorySaver
from langgraph.graph import START, MessagesState, StateGraph

import os
from dotenv import load_dotenv
load_dotenv()

# Initialize the model and tokenizer
print("Loading model and tokenizer...")
device = "cuda" if torch.cuda.is_available() else "cpu"
model_name = "HuggingFaceTB/SmolLM2-1.7B-Instruct"

try:
    # Load the model in BF16 format for better performance and lower memory usage
    tokenizer = AutoTokenizer.from_pretrained(model_name)
    
    if device == "cuda":
        print("Using GPU for the model...")
        model = AutoModelForCausalLM.from_pretrained(
            model_name,
            torch_dtype=torch.bfloat16,
            device_map="auto",
            low_cpu_mem_usage=True
        )
    else:
        print("Using CPU for the model...")
        model = AutoModelForCausalLM.from_pretrained(
            model_name,
            device_map={"": device},
            torch_dtype=torch.float32
        )

    print(f"Model loaded successfully on: {device}")
except Exception as e:
    print(f"Error loading the model: {str(e)}")
    raise

# Define the function that calls the model
def call_model(state: MessagesState, system_prompt: str):
    """
    Call the model with the given messages

    Args:
        state: MessagesState

    Returns:
        dict: A dictionary containing the generated text and the thread ID
    """
    # Convert LangChain messages to chat format
    messages = [
        {"role": "system", "content": system_prompt}
    ]
    
    for msg in state["messages"]:
        if isinstance(msg, HumanMessage):
            messages.append({"role": "user", "content": msg.content})
        elif isinstance(msg, AIMessage):
            messages.append({"role": "assistant", "content": msg.content})
    
    # Prepare the input using the chat template
    input_text = tokenizer.apply_chat_template(messages, tokenize=False)
    inputs = tokenizer.encode(input_text, return_tensors="pt").to(device)
    
    # Generate response
    outputs = model.generate(
        inputs,
        max_new_tokens=512,  # Increase the number of tokens for longer responses
        temperature=0.7,
        top_p=0.9,
        do_sample=True,
        pad_token_id=tokenizer.eos_token_id
    )
    
    # Decode and clean the response
    response = tokenizer.decode(outputs[0], skip_special_tokens=True)
    # Extract only the assistant's response (after the last user message)
    response = response.split("Assistant:")[-1].strip()
    
    # Convert the response to LangChain format
    ai_message = AIMessage(content=response)
    return {"messages": state["messages"] + [ai_message]}

# Define the graph
workflow = StateGraph(state_schema=MessagesState)

# Define the node in the graph
workflow.add_edge(START, "model")
workflow.add_node("model", call_model)

# Add memory
memory = MemorySaver()

# Define the default system prompt
DEFAULT_SYSTEM_PROMPT = "You are a friendly Chatbot. Always reply in the language in which the user is writing to you."

# Use partial to create a version of the function with the default system prompt
workflow.add_node("model", partial(call_model, system_prompt=DEFAULT_SYSTEM_PROMPT))

graph_app = workflow.compile(checkpointer=memory)

# Define the data model for the request
class QueryRequest(BaseModel):
    query: str
    thread_id: str = "default"
    system_prompt: str = DEFAULT_SYSTEM_PROMPT

# Define the model for summary requests
class SummaryRequest(BaseModel):
    text: str
    thread_id: str = "default"
    max_length: int = 200

# Create the FastAPI application
app = FastAPI(title="LangChain FastAPI", description="API to generate text using LangChain and LangGraph - Máximo Fernández Núñez IriusRisk test challenge")

# Welcome endpoint
@app.get("/")
async def api_home():
    """Welcome endpoint"""
    return {"detail": "Welcome to Máximo Fernández Núñez IriusRisk test challenge"}

# Generate endpoint
@app.post("/generate")
async def generate(request: QueryRequest):
    """
    Endpoint to generate text using the language model
    
    Args:
        request: QueryRequest
            query: str
            thread_id: str = "default"
            system_prompt: str = DEFAULT_SYSTEM_PROMPT

    Returns:
        dict: A dictionary containing the generated text and the thread ID
    """
    try:
        # Configure the thread ID
        config = {"configurable": {"thread_id": request.thread_id}}
        
        # Create the input message
        input_messages = [HumanMessage(content=request.query)]
        
        # Invoke the graph with custom system prompt
        output = graph_app.invoke(
            {"messages": input_messages}, 
            config,
            {"model": {"system_prompt": request.system_prompt}}
        )
        
        # Get the model response
        response = output["messages"][-1].content
        
        return {
            "generated_text": response,
            "thread_id": request.thread_id
        }
    except Exception as e:
        raise HTTPException(status_code=500, detail=f"Error generating text: {str(e)}")

@app.post("/summarize")
async def summarize(request: SummaryRequest):
    """
    Endpoint to generate a summary using the language model
    
    Args:
        request: SummaryRequest
            text: str - The text to summarize
            thread_id: str = "default"
            max_length: int = 200 - Maximum summary length

    Returns:
        dict: A dictionary containing the summary and the thread ID
    """
    try:
        # Configure the thread ID
        config = {"configurable": {"thread_id": request.thread_id}}
        
        # Create a specific system prompt for summarization
        summary_system_prompt = f"Make a summary of the following text in no more than {request.max_length} words. Keep the most important information and eliminate unnecessary details."
        
        # Create the input message
        input_messages = [HumanMessage(content=request.text)]
        
        # Invoke the graph with summarization system prompt
        output = graph_app.invoke(
            {"messages": input_messages}, 
            config,
            {"model": {"system_prompt": summary_system_prompt}}
        )
        
        # Get the model response
        response = output["messages"][-1].content
        
        return {
            "summary": response,
            "thread_id": request.thread_id
        }
    except Exception as e:
        raise HTTPException(status_code=500, detail=f"Error generating summary: {str(e)}")

if __name__ == "__main__":
    import uvicorn
    uvicorn.run(app, host="0.0.0.0", port=7860)