Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,26 +1,28 @@
|
|
1 |
-
import
|
2 |
-
import base64
|
3 |
import io
|
4 |
import time
|
|
|
5 |
import logging
|
6 |
import fitz # PyMuPDF
|
7 |
from PIL import Image
|
8 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
|
10 |
# Set up logging
|
11 |
logging.basicConfig(level=logging.INFO)
|
12 |
logger = logging.getLogger(__name__)
|
13 |
|
14 |
-
import os
|
15 |
-
OPENROUTER_API_KEY = os.getenv("OPENAI_TOKEN")
|
16 |
-
if not OPENROUTER_API_KEY:
|
17 |
-
raise ValueError("OPENROUTER_API_KEY environment variable not set")
|
18 |
-
openai.api_key = OPENROUTER_API_KEY
|
19 |
-
|
20 |
-
# Configure the OpenAI API to use OpenRouter
|
21 |
-
openai.api_base = "https://openrouter.ai/api/v1"
|
22 |
-
openai.api_key = OPENROUTER_API_KEY
|
23 |
-
|
24 |
# -------------------------------
|
25 |
# Document State and File Processing
|
26 |
# -------------------------------
|
@@ -38,7 +40,7 @@ class DocumentState:
|
|
38 |
doc_state = DocumentState()
|
39 |
|
40 |
def process_pdf_file(file_path):
|
41 |
-
"""Convert PDF to images and extract text using PyMuPDF."""
|
42 |
try:
|
43 |
doc = fitz.open(file_path)
|
44 |
images = []
|
@@ -50,13 +52,12 @@ def process_pdf_file(file_path):
|
|
50 |
if page_text.strip():
|
51 |
text += f"Page {page_num + 1}:\n{page_text}\n\n"
|
52 |
|
53 |
-
# Render page
|
54 |
zoom = 3
|
55 |
mat = fitz.Matrix(zoom, zoom)
|
56 |
pix = page.get_pixmap(matrix=mat, alpha=False)
|
57 |
img_data = pix.tobytes("png")
|
58 |
-
img = Image.open(io.BytesIO(img_data))
|
59 |
-
img = img.convert("RGB")
|
60 |
|
61 |
# Resize if image is too large
|
62 |
max_size = 1600
|
@@ -64,7 +65,6 @@ def process_pdf_file(file_path):
|
|
64 |
ratio = max_size / max(img.size)
|
65 |
new_size = tuple(int(dim * ratio) for dim in img.size)
|
66 |
img = img.resize(new_size, Image.Resampling.LANCZOS)
|
67 |
-
|
68 |
images.append(img)
|
69 |
except Exception as e:
|
70 |
logger.error(f"Error processing page {page_num}: {str(e)}")
|
@@ -78,13 +78,13 @@ def process_pdf_file(file_path):
|
|
78 |
raise
|
79 |
|
80 |
def process_uploaded_file(file):
|
81 |
-
"""Process uploaded file and update document state."""
|
82 |
try:
|
83 |
doc_state.clear()
|
84 |
if file is None:
|
85 |
return "No file uploaded. Please upload a file."
|
86 |
|
87 |
-
# Get the file path
|
88 |
if isinstance(file, dict):
|
89 |
file_path = file["name"]
|
90 |
else:
|
@@ -119,16 +119,17 @@ def process_uploaded_file(file):
|
|
119 |
return "An error occurred while processing the file. Please try again."
|
120 |
|
121 |
# -------------------------------
|
122 |
-
# Bot Streaming Function Using
|
123 |
# -------------------------------
|
124 |
-
def bot_streaming(prompt_option, max_new_tokens=
|
125 |
"""
|
126 |
-
|
127 |
-
|
128 |
-
|
|
|
129 |
"""
|
130 |
try:
|
131 |
-
#
|
132 |
prompts = {
|
133 |
"NOC Timesheet": (
|
134 |
"""Extract structured information from the provided timesheet. The extracted details should include:
|
@@ -173,333 +174,90 @@ Noc representative's date approval_date
|
|
173 |
|
174 |
Noc representative status as approval_status
|
175 |
|
176 |
-
|
177 |
-
|
178 |
-
As an example, for the schema {"properties": {"foo": {"title": "Foo", "description": "a list of strings", "type": "array", "items": {"type": "string"}}}, "required": ["foo"]} the object {"foo": ["bar", "baz"]} is a well-formatted instance of the schema. The object {"properties": {"foo": ["bar", "baz"]}} is not well-formatted."""
|
179 |
),
|
180 |
"NOC Basic": (
|
181 |
"Based on the provided timesheet details, extract the following information:\n"
|
182 |
-
" - Full name
|
183 |
-
" - Position title
|
184 |
" - Work location\n"
|
185 |
" - Contractor's name\n"
|
186 |
" - NOC ID\n"
|
187 |
-
" - Month and year (
|
188 |
),
|
189 |
"Aramco Full structured": (
|
190 |
-
"""You are a document parsing assistant designed to extract structured data from various
|
191 |
-
|
192 |
-
1. Always return ONLY valid JSON—no explanations, comments, or additional text.
|
193 |
-
2. Use null for any fields that are not present or cannot be extracted.
|
194 |
-
3. Ensure all JSON keys are enclosed in double quotes and properly formatted.
|
195 |
-
4. Validate financial, time tracking, and contract details carefully before output.
|
196 |
-
|
197 |
-
Extraction Instructions:
|
198 |
-
|
199 |
-
1. Invoice:
|
200 |
-
- Parse and extract financial and invoice-specific details.
|
201 |
-
- JSON structure:
|
202 |
-
```json
|
203 |
-
{
|
204 |
-
"invoice": {
|
205 |
-
"date": null,
|
206 |
-
"dueDate": null,
|
207 |
-
"accountNumber": null,
|
208 |
-
"invoiceNumber": null,
|
209 |
-
"customerContact": null,
|
210 |
-
"kintecContact": null,
|
211 |
-
"accountsContact": null,
|
212 |
-
"periodEnd": null,
|
213 |
-
"contractNo": null,
|
214 |
-
"specialistsName": null,
|
215 |
-
"rpoNumber": null,
|
216 |
-
"assignmentProject": null,
|
217 |
-
"workLocation": null,
|
218 |
-
"expenses": null,
|
219 |
-
"regularHours": null,
|
220 |
-
"overtime": null,
|
221 |
-
"mobilisationAllowance": null,
|
222 |
-
"dailyHousing": null,
|
223 |
-
"opPipTechnical": null,
|
224 |
-
"code": null,
|
225 |
-
"vatBasis": null,
|
226 |
-
"vatRate": null,
|
227 |
-
"vatAmount": null,
|
228 |
-
"totalExclVat": null,
|
229 |
-
"totalInclVat": null
|
230 |
-
}
|
231 |
-
}
|
232 |
-
```
|
233 |
-
|
234 |
-
2. Timesheet:
|
235 |
-
- Extract time tracking, work details, and approvals.
|
236 |
-
- JSON structure:
|
237 |
-
```json
|
238 |
-
{
|
239 |
-
"timesheet": {
|
240 |
-
"Year": null,
|
241 |
-
"RPO_Number": null,
|
242 |
-
"PMC_Name": null,
|
243 |
-
"Project_Location": null,
|
244 |
-
"Project_and_Package": null,
|
245 |
-
"Month": null,
|
246 |
-
"Timesheet_Details": [
|
247 |
-
{
|
248 |
-
"Week": null,
|
249 |
-
"Regular_Hours": null,
|
250 |
-
"Overtime_Hours": null,
|
251 |
-
"Total_Hours": null,
|
252 |
-
"Comments": null
|
253 |
-
},
|
254 |
-
{
|
255 |
-
"Week": null,
|
256 |
-
"Regular_Hours": null,
|
257 |
-
"Overtime_Hours": null,
|
258 |
-
"Total_Hours": null,
|
259 |
-
"Comments": null
|
260 |
-
}
|
261 |
-
],
|
262 |
-
"Monthly_Totals": {
|
263 |
-
"Regular_Hours": null,
|
264 |
-
"Overtime_Hours": null,
|
265 |
-
"Total_Hours": null
|
266 |
-
},
|
267 |
-
"reviewedBy": {
|
268 |
-
"name": null,
|
269 |
-
"position": null,
|
270 |
-
"date": null
|
271 |
-
},
|
272 |
-
"approvedBy": {
|
273 |
-
"name": null,
|
274 |
-
"position": null,
|
275 |
-
"date": null
|
276 |
-
}
|
277 |
-
}
|
278 |
-
}
|
279 |
-
```
|
280 |
-
|
281 |
-
3. Purchase Order:
|
282 |
-
- Extract contract and pricing details with precision.
|
283 |
-
- JSON structure:
|
284 |
-
```json
|
285 |
-
{
|
286 |
-
"purchaseOrder": {
|
287 |
-
"contractNo": null,
|
288 |
-
"relPoNo": null,
|
289 |
-
"version": null,
|
290 |
-
"title": null,
|
291 |
-
"startDate": null,
|
292 |
-
"endDate": null,
|
293 |
-
"costCenter": null,
|
294 |
-
"purchasingGroup": null,
|
295 |
-
"contractor": null,
|
296 |
-
"location": null,
|
297 |
-
"workDescription": null,
|
298 |
-
"pricing": {
|
299 |
-
"regularRate": null,
|
300 |
-
"overtimeRate": null,
|
301 |
-
"totalBudget": null
|
302 |
-
}
|
303 |
-
}
|
304 |
-
}
|
305 |
-
```
|
306 |
-
|
307 |
-
4. Travel Booking:
|
308 |
-
- Parse travel-specific and employee information.
|
309 |
-
- JSON structure:
|
310 |
-
```json
|
311 |
-
{
|
312 |
-
"travelBooking": {
|
313 |
-
"requestId": null,
|
314 |
-
"approvalStatus": null,
|
315 |
-
"employee": {
|
316 |
-
"name": null,
|
317 |
-
"id": null,
|
318 |
-
"email": null,
|
319 |
-
"firstName": null,
|
320 |
-
"lastName": null,
|
321 |
-
"gradeCodeGroup": null
|
322 |
-
},
|
323 |
-
"defaultManager": {
|
324 |
-
"name": null,
|
325 |
-
"email": null
|
326 |
-
},
|
327 |
-
"sender": {
|
328 |
-
"name": null,
|
329 |
-
"email": null
|
330 |
-
},
|
331 |
-
"travel": {
|
332 |
-
"startDate": null,
|
333 |
-
"endDate": null,
|
334 |
-
"requestPolicy": null,
|
335 |
-
"requestType": null,
|
336 |
-
"employeeType": null,
|
337 |
-
"travelActivity": null,
|
338 |
-
"tripType": null
|
339 |
-
},
|
340 |
-
"cost": {
|
341 |
-
"companyCode": null,
|
342 |
-
"costObject": null,
|
343 |
-
"costObjectId": null
|
344 |
-
},
|
345 |
-
"transport": {
|
346 |
-
"type": null,
|
347 |
-
"comments": null
|
348 |
-
},
|
349 |
-
"changeRequired": null,
|
350 |
-
"comments": null
|
351 |
-
}
|
352 |
-
}
|
353 |
-
```
|
354 |
-
|
355 |
-
Use these structures for parsing documents and ensure compliance with the rules and instructions provided for each type."""
|
356 |
),
|
357 |
"Aramco Timesheet only": (
|
358 |
"""Extract time tracking, work details, and approvals.
|
359 |
-
|
360 |
-
|
361 |
-
{
|
362 |
-
"timesheet": {
|
363 |
-
"Year": null,
|
364 |
-
"RPO_Number": null,
|
365 |
-
"PMC_Name": null,
|
366 |
-
"Project_Location": null,
|
367 |
-
"Project_and_Package": null,
|
368 |
-
"Month": null,
|
369 |
-
"Timesheet_Details": [
|
370 |
-
{
|
371 |
-
"Week": null,
|
372 |
-
"Regular_Hours": null,
|
373 |
-
"Overtime_Hours": null,
|
374 |
-
"Total_Hours": null,
|
375 |
-
"Comments": null
|
376 |
-
},
|
377 |
-
{
|
378 |
-
"Week": null,
|
379 |
-
"Regular_Hours": null,
|
380 |
-
"Overtime_Hours": null,
|
381 |
-
"Total_Hours": null,
|
382 |
-
"Comments": null
|
383 |
-
}
|
384 |
-
],
|
385 |
-
"Monthly_Totals": {
|
386 |
-
"Regular_Hours": null,
|
387 |
-
"Overtime_Hours": null,
|
388 |
-
"Total_Hours": null
|
389 |
-
},
|
390 |
-
"reviewedBy": {
|
391 |
-
"name": null,
|
392 |
-
"position": null,
|
393 |
-
"date": null
|
394 |
-
},
|
395 |
-
"approvedBy": {
|
396 |
-
"name": null,
|
397 |
-
"position": null,
|
398 |
-
"date": null
|
399 |
-
}
|
400 |
-
}
|
401 |
-
}
|
402 |
-
```"""
|
403 |
),
|
404 |
"NOC Invoice": (
|
405 |
-
"""You are a highly accurate data extraction system.
|
406 |
-
|
407 |
-
Here's the expected output format, in JSON, with all required fields:
|
408 |
-
|
409 |
-
```json
|
410 |
{
|
411 |
-
"invoiceDetails": {
|
412 |
-
|
413 |
-
|
414 |
-
|
415 |
-
|
416 |
-
|
417 |
-
},
|
418 |
-
"from": {
|
419 |
-
"companyName": "string",
|
420 |
-
"addressLine1": "string",
|
421 |
-
"addressLine2": "string",
|
422 |
-
"city": "string",
|
423 |
-
"postalCode": "string",
|
424 |
-
"country": "string"
|
425 |
-
},
|
426 |
-
"to": {
|
427 |
-
"companyName": "string",
|
428 |
-
"office": "string",
|
429 |
-
"floor": "string",
|
430 |
-
"building": "string",
|
431 |
-
"addressLine1": "string",
|
432 |
-
"poBox": "string",
|
433 |
-
"city": "string"
|
434 |
-
},
|
435 |
-
"services": [
|
436 |
-
{
|
437 |
-
"serviceDetails": "string",
|
438 |
-
"fromDate": "string",
|
439 |
-
"toDate": "string",
|
440 |
-
"currency": "string",
|
441 |
-
"fx": "string",
|
442 |
-
"noOfDays": "number or string (if range)",
|
443 |
-
"rate": "number",
|
444 |
-
"total": "number"
|
445 |
-
}
|
446 |
-
],
|
447 |
-
"totals": {
|
448 |
-
"subTotal": "number",
|
449 |
-
"tax": "number",
|
450 |
-
"totalDue": "number"
|
451 |
-
},
|
452 |
-
"bankDetails": {
|
453 |
-
"bankName": "string",
|
454 |
-
"descriptionReferenceField": "string",
|
455 |
-
"bankAddress": "string",
|
456 |
-
"swiftBicCode": "string",
|
457 |
-
"ibanNumber": "string",
|
458 |
-
"accountNumber": "string",
|
459 |
-
"beneficiaryName": "string",
|
460 |
-
"accountCurrency": "string",
|
461 |
-
"expectedAmount": "string"
|
462 |
-
}
|
463 |
}
|
464 |
-
|
465 |
)
|
466 |
}
|
467 |
|
468 |
-
#
|
469 |
selected_prompt = prompts.get(prompt_option, "Invalid prompt selected.")
|
470 |
context = ""
|
471 |
-
if doc_state.current_doc_images:
|
472 |
-
|
473 |
-
context = f"\nDocument context:\n{doc_state.current_doc_text}"
|
474 |
full_prompt = selected_prompt + context
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
475 |
|
476 |
-
#
|
477 |
-
messages = [{"role": "user", "content": full_prompt}]
|
478 |
-
|
479 |
-
# If an image is available, encode it in base64 and append to the prompt
|
480 |
if doc_state.current_doc_images:
|
481 |
buffered = io.BytesIO()
|
482 |
doc_state.current_doc_images[0].save(buffered, format="PNG")
|
483 |
-
|
484 |
-
|
|
|
|
|
|
|
|
|
|
|
485 |
|
486 |
-
# Call the
|
487 |
-
|
488 |
model="qwen/qwen2.5-vl-72b-instruct:free",
|
489 |
messages=messages,
|
490 |
max_tokens=max_new_tokens,
|
491 |
-
stream=True
|
492 |
)
|
493 |
|
494 |
buffer = ""
|
495 |
-
for chunk in
|
496 |
-
|
497 |
-
|
498 |
-
|
499 |
-
|
500 |
-
|
501 |
-
|
502 |
-
|
503 |
except Exception as e:
|
504 |
logger.error(f"Error in bot_streaming: {str(e)}")
|
505 |
yield "An error occurred while processing your request. Please try again."
|
@@ -521,48 +279,21 @@ with gr.Blocks() as demo:
|
|
521 |
label="Upload Document",
|
522 |
file_types=[".pdf", ".png", ".jpg", ".jpeg", ".gif", ".bmp", ".webp"]
|
523 |
)
|
524 |
-
upload_status = gr.Textbox(
|
525 |
-
label="Upload Status",
|
526 |
-
interactive=False
|
527 |
-
)
|
528 |
|
529 |
with gr.Row():
|
530 |
prompt_dropdown = gr.Dropdown(
|
531 |
label="Select Prompt",
|
532 |
-
choices=[
|
533 |
-
"NOC Timesheet",
|
534 |
-
"NOC Basic",
|
535 |
-
"Aramco Full structured",
|
536 |
-
"Aramco Timesheet only",
|
537 |
-
"NOC Invoice"
|
538 |
-
],
|
539 |
value="NOC Timesheet"
|
540 |
)
|
541 |
generate_btn = gr.Button("Generate")
|
542 |
|
543 |
clear_btn = gr.Button("Clear Document Context")
|
|
|
544 |
|
545 |
-
|
546 |
-
|
547 |
-
|
548 |
-
)
|
549 |
-
|
550 |
-
file_upload.change(
|
551 |
-
fn=process_uploaded_file,
|
552 |
-
inputs=[file_upload],
|
553 |
-
outputs=[upload_status]
|
554 |
-
)
|
555 |
-
|
556 |
-
generate_btn.click(
|
557 |
-
fn=bot_streaming,
|
558 |
-
inputs=[prompt_dropdown],
|
559 |
-
outputs=[output_text]
|
560 |
-
)
|
561 |
-
|
562 |
-
clear_btn.click(
|
563 |
-
fn=clear_context,
|
564 |
-
outputs=[upload_status]
|
565 |
-
)
|
566 |
|
567 |
-
# Launch the interface
|
568 |
demo.launch(debug=True)
|
|
|
1 |
+
import os
|
|
|
2 |
import io
|
3 |
import time
|
4 |
+
import base64
|
5 |
import logging
|
6 |
import fitz # PyMuPDF
|
7 |
from PIL import Image
|
8 |
import gradio as gr
|
9 |
+
from openai import OpenAI # Use the OpenAI client that supports multimodal messages
|
10 |
+
|
11 |
+
# Load API key from environment variable (secrets)
|
12 |
+
HF_API_KEY = os.getenv("OPENAI_TOKEN")
|
13 |
+
if not HF_API_KEY:
|
14 |
+
raise ValueError("HF_API_KEY environment variable not set")
|
15 |
+
|
16 |
+
# Create the client pointing to the Hugging Face Inference endpoint
|
17 |
+
client = OpenAI(
|
18 |
+
base_url="https://openrouter.ai/api/v1",
|
19 |
+
api_key=HF_API_KEY
|
20 |
+
)
|
21 |
|
22 |
# Set up logging
|
23 |
logging.basicConfig(level=logging.INFO)
|
24 |
logger = logging.getLogger(__name__)
|
25 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
# -------------------------------
|
27 |
# Document State and File Processing
|
28 |
# -------------------------------
|
|
|
40 |
doc_state = DocumentState()
|
41 |
|
42 |
def process_pdf_file(file_path):
|
43 |
+
"""Convert PDF pages to images and extract text using PyMuPDF."""
|
44 |
try:
|
45 |
doc = fitz.open(file_path)
|
46 |
images = []
|
|
|
52 |
if page_text.strip():
|
53 |
text += f"Page {page_num + 1}:\n{page_text}\n\n"
|
54 |
|
55 |
+
# Render page as an image with a zoom factor
|
56 |
zoom = 3
|
57 |
mat = fitz.Matrix(zoom, zoom)
|
58 |
pix = page.get_pixmap(matrix=mat, alpha=False)
|
59 |
img_data = pix.tobytes("png")
|
60 |
+
img = Image.open(io.BytesIO(img_data)).convert("RGB")
|
|
|
61 |
|
62 |
# Resize if image is too large
|
63 |
max_size = 1600
|
|
|
65 |
ratio = max_size / max(img.size)
|
66 |
new_size = tuple(int(dim * ratio) for dim in img.size)
|
67 |
img = img.resize(new_size, Image.Resampling.LANCZOS)
|
|
|
68 |
images.append(img)
|
69 |
except Exception as e:
|
70 |
logger.error(f"Error processing page {page_num}: {str(e)}")
|
|
|
78 |
raise
|
79 |
|
80 |
def process_uploaded_file(file):
|
81 |
+
"""Process an uploaded file (PDF or image) and update document state."""
|
82 |
try:
|
83 |
doc_state.clear()
|
84 |
if file is None:
|
85 |
return "No file uploaded. Please upload a file."
|
86 |
|
87 |
+
# Get the file path from the Gradio upload (may be a dict or file-like object)
|
88 |
if isinstance(file, dict):
|
89 |
file_path = file["name"]
|
90 |
else:
|
|
|
119 |
return "An error occurred while processing the file. Please try again."
|
120 |
|
121 |
# -------------------------------
|
122 |
+
# Bot Streaming Function Using the Multimodal API
|
123 |
# -------------------------------
|
124 |
+
def bot_streaming(prompt_option, max_new_tokens=500):
|
125 |
"""
|
126 |
+
Build a multimodal message payload and call the inference API.
|
127 |
+
The payload includes:
|
128 |
+
- A text segment (the selected prompt and any document context).
|
129 |
+
- If available, an image as a data URI (using a base64-encoded PNG).
|
130 |
"""
|
131 |
try:
|
132 |
+
# Predetermined prompts (you can adjust these as needed)
|
133 |
prompts = {
|
134 |
"NOC Timesheet": (
|
135 |
"""Extract structured information from the provided timesheet. The extracted details should include:
|
|
|
174 |
|
175 |
Noc representative status as approval_status
|
176 |
|
177 |
+
Format the output as valid JSON.
|
178 |
+
"""
|
|
|
179 |
),
|
180 |
"NOC Basic": (
|
181 |
"Based on the provided timesheet details, extract the following information:\n"
|
182 |
+
" - Full name\n"
|
183 |
+
" - Position title\n"
|
184 |
" - Work location\n"
|
185 |
" - Contractor's name\n"
|
186 |
" - NOC ID\n"
|
187 |
+
" - Month and year (MM/YYYY)"
|
188 |
),
|
189 |
"Aramco Full structured": (
|
190 |
+
"""You are a document parsing assistant designed to extract structured data from various documents such as invoices, timesheets, purchase orders, and travel bookings. Return only valid JSON with no extra text.
|
191 |
+
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
192 |
),
|
193 |
"Aramco Timesheet only": (
|
194 |
"""Extract time tracking, work details, and approvals.
|
195 |
+
Return a JSON object following the specified structure.
|
196 |
+
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
197 |
),
|
198 |
"NOC Invoice": (
|
199 |
+
"""You are a highly accurate data extraction system. Analyze the provided invoice image and extract all data into the following JSON format:
|
|
|
|
|
|
|
|
|
200 |
{
|
201 |
+
"invoiceDetails": { ... },
|
202 |
+
"from": { ... },
|
203 |
+
"to": { ... },
|
204 |
+
"services": [ ... ],
|
205 |
+
"totals": { ... },
|
206 |
+
"bankDetails": { ... }
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
207 |
}
|
208 |
+
"""
|
209 |
)
|
210 |
}
|
211 |
|
212 |
+
# Select the appropriate prompt
|
213 |
selected_prompt = prompts.get(prompt_option, "Invalid prompt selected.")
|
214 |
context = ""
|
215 |
+
if doc_state.current_doc_images and doc_state.current_doc_text:
|
216 |
+
context = "\nDocument context:\n" + doc_state.current_doc_text
|
|
|
217 |
full_prompt = selected_prompt + context
|
218 |
+
|
219 |
+
# Build the message payload in the expected format.
|
220 |
+
# The content field is a list of objects—one for text, and (if an image is available) one for the image.
|
221 |
+
messages = [
|
222 |
+
{
|
223 |
+
"role": "user",
|
224 |
+
"content": [
|
225 |
+
{
|
226 |
+
"type": "text",
|
227 |
+
"text": full_prompt
|
228 |
+
}
|
229 |
+
]
|
230 |
+
}
|
231 |
+
]
|
232 |
|
233 |
+
# If an image is available, encode it as a data URI and append it as an image_url message.
|
|
|
|
|
|
|
234 |
if doc_state.current_doc_images:
|
235 |
buffered = io.BytesIO()
|
236 |
doc_state.current_doc_images[0].save(buffered, format="PNG")
|
237 |
+
img_b64 = base64.b64encode(buffered.getvalue()).decode("utf-8")
|
238 |
+
# Create a data URI (many APIs accept this format in place of a public URL)
|
239 |
+
data_uri = f"data:image/png;base64,{img_b64}"
|
240 |
+
messages[0]["content"].append({
|
241 |
+
"type": "image_url",
|
242 |
+
"image_url": {"url": data_uri}
|
243 |
+
})
|
244 |
|
245 |
+
# Call the inference API with streaming enabled.
|
246 |
+
stream = client.chat.completions.create(
|
247 |
model="qwen/qwen2.5-vl-72b-instruct:free",
|
248 |
messages=messages,
|
249 |
max_tokens=max_new_tokens,
|
250 |
+
stream=True
|
251 |
)
|
252 |
|
253 |
buffer = ""
|
254 |
+
for chunk in stream:
|
255 |
+
# The response structure is similar to the reference: each chunk contains a delta.
|
256 |
+
delta = chunk.choices[0].delta.content
|
257 |
+
buffer += delta
|
258 |
+
time.sleep(0.01)
|
259 |
+
yield buffer
|
260 |
+
|
|
|
261 |
except Exception as e:
|
262 |
logger.error(f"Error in bot_streaming: {str(e)}")
|
263 |
yield "An error occurred while processing your request. Please try again."
|
|
|
279 |
label="Upload Document",
|
280 |
file_types=[".pdf", ".png", ".jpg", ".jpeg", ".gif", ".bmp", ".webp"]
|
281 |
)
|
282 |
+
upload_status = gr.Textbox(label="Upload Status", interactive=False)
|
|
|
|
|
|
|
283 |
|
284 |
with gr.Row():
|
285 |
prompt_dropdown = gr.Dropdown(
|
286 |
label="Select Prompt",
|
287 |
+
choices=["NOC Timesheet", "NOC Basic", "Aramco Full structured", "Aramco Timesheet only", "NOC Invoice"],
|
|
|
|
|
|
|
|
|
|
|
|
|
288 |
value="NOC Timesheet"
|
289 |
)
|
290 |
generate_btn = gr.Button("Generate")
|
291 |
|
292 |
clear_btn = gr.Button("Clear Document Context")
|
293 |
+
output_text = gr.Textbox(label="Output", interactive=False)
|
294 |
|
295 |
+
file_upload.change(fn=process_uploaded_file, inputs=[file_upload], outputs=[upload_status])
|
296 |
+
generate_btn.click(fn=bot_streaming, inputs=[prompt_dropdown], outputs=[output_text])
|
297 |
+
clear_btn.click(fn=clear_context, outputs=[upload_status])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
298 |
|
|
|
299 |
demo.launch(debug=True)
|