Vision_tester / app.py
Daemontatox's picture
Update app.py
15245b5 verified
raw
history blame
4.46 kB
from transformers import AutoTokenizer, TextStreamer
from PIL import Image
import torch
from threading import Thread
import gradio as gr
from gradio import FileData
import time
import spaces
from unsloth import FastVisionModel
# Load model and tokenizer
ckpt = "Daemontatox/DocumentLlama"
model, tokenizer = FastVisionModel.from_pretrained(
ckpt,
load_in_4bit=True,
use_gradient_checkpointing="unsloth",
)
# Enable inference mode
FastVisionModel.for_inference(model)
@spaces.GPU()
def bot_streaming(message, history, max_new_tokens=2048):
txt = message["text"]
messages = []
images = []
# Process history
for i, msg in enumerate(history):
if isinstance(msg[0], tuple):
messages.append({
"role": "user",
"content": [
{"type": "text", "text": history[i+1][0]},
{"type": "image"}
]
})
messages.append({
"role": "assistant",
"content": [{"type": "text", "text": history[i+1][1]}]
})
images.append(Image.open(msg[0][0]).convert("RGB"))
elif isinstance(history[i-1], tuple) and isinstance(msg[0], str):
pass
elif isinstance(history[i-1][0], str) and isinstance(msg[0], str):
messages.append({
"role": "user",
"content": [{"type": "text", "text": msg[0]}]
})
messages.append({
"role": "assistant",
"content": [{"type": "text", "text": msg[1]}]
})
# Handle current message
if len(message["files"]) == 1:
if isinstance(message["files"][0], str): # examples
image = Image.open(message["files"][0]).convert("RGB")
else: # regular input
image = Image.open(message["files"][0]["path"]).convert("RGB")
images.append(image)
messages.append({
"role": "user",
"content": [
{"type": "image"},
{"type": "text", "text": txt}
]
})
else:
messages.append({
"role": "user",
"content": [{"type": "text", "text": txt}]
})
# Prepare inputs
input_text = tokenizer.apply_chat_template(messages, add_generation_prompt=True)
if images:
inputs = tokenizer(
images[-1], # Use the last image
input_text,
add_special_tokens=False,
return_tensors="pt"
).to("cuda")
else:
inputs = tokenizer(
input_text,
add_special_tokens=False,
return_tensors="pt"
).to("cuda")
# Setup streaming
text_streamer = TextStreamer(tokenizer, skip_prompt=True)
buffer = ""
def generate():
nonlocal buffer
output_ids = model.generate(
**inputs,
streamer=text_streamer,
max_new_tokens=max_new_tokens,
use_cache=True,
temperature=1.5,
min_p=0.1
)
thread = Thread(target=generate)
thread.start()
for new_text in text_streamer:
buffer += new_text
time.sleep(0.01)
yield buffer
# Setup Gradio interface
demo = gr.ChatInterface(
fn=bot_streaming,
title="Document Analyzer",
examples=[
[{"text": "Which era does this piece belong to? Give details about the era.", "files":["./examples/rococo.jpg"]}, 200],
[{"text": "Where do the droughts happen according to this diagram?", "files":["./examples/weather_events.png"]}, 250],
[{"text": "What happens when you take out white cat from this chain?", "files":["./examples/ai2d_test.jpg"]}, 250],
[{"text": "How long does it take from invoice date to due date? Be short and concise.", "files":["./examples/invoice.png"]}, 250],
[{"text": "Where to find this monument? Can you give me other recommendations around the area?", "files":["./examples/wat_arun.jpg"]}, 250],
],
textbox=gr.MultimodalTextbox(),
additional_inputs=[
gr.Slider(
minimum=10,
maximum=500,
value=2048,
step=10,
label="Maximum number of new tokens to generate",
)
],
cache_examples=False,
description="MllM",
stop_btn="Stop Generation",
fill_height=True,
multimodal=True
)
demo.launch(debug=True)