File size: 3,853 Bytes
df30043
686ef17
df30043
686ef17
 
 
 
 
 
ecc54fe
df30043
6c13452
df30043
15d82cf
686ef17
121a196
0318ee3
df30043
686ef17
df30043
 
 
686ef17
 
df30043
 
686ef17
df30043
 
686ef17
 
df30043
686ef17
df30043
 
 
686ef17
df30043
686ef17
df30043
 
686ef17
df30043
686ef17
 
df30043
686ef17
df30043
686ef17
 
df30043
 
 
 
 
 
 
15245b5
df30043
 
686ef17
df30043
686ef17
df30043
686ef17
df30043
686ef17
df30043
686ef17
 
 
15245b5
df30043
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
686ef17
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
from transformers import MllamaForConditionalGeneration, AutoProcessor, TextIteratorStreamer
from PIL import Image
import requests
import torch
from threading import Thread
import gradio as gr
from gradio import FileData
import time
import spaces
ckpt ="Daemontatox/DocumentCogito"
model = MllamaForConditionalGeneration.from_pretrained(ckpt,
    torch_dtype=torch.bfloat16).to("cuda")
processor = AutoProcessor.from_pretrained(ckpt)


@spaces.GPU()
def bot_streaming(message, history, max_new_tokens=2048):
    
    txt = message["text"]
    ext_buffer = f"{txt}"
    
    messages= [] 
    images = []
    

    for i, msg in enumerate(history): 
        if isinstance(msg[0], tuple):
            messages.append({"role": "user", "content": [{"type": "text", "text": history[i+1][0]}, {"type": "image"}]})
            messages.append({"role": "assistant", "content": [{"type": "text", "text": history[i+1][1]}]})
            images.append(Image.open(msg[0][0]).convert("RGB"))
        elif isinstance(history[i-1], tuple) and isinstance(msg[0], str):
            # messages are already handled
            pass
        elif isinstance(history[i-1][0], str) and isinstance(msg[0], str): # text only turn
            messages.append({"role": "user", "content": [{"type": "text", "text": msg[0]}]})
            messages.append({"role": "assistant", "content": [{"type": "text", "text": msg[1]}]})

    # add current message
    if len(message["files"]) == 1:
        
        if isinstance(message["files"][0], str): # examples
            image = Image.open(message["files"][0]).convert("RGB")
        else: # regular input
            image = Image.open(message["files"][0]["path"]).convert("RGB")
        images.append(image)
        messages.append({"role": "user", "content": [{"type": "text", "text": txt}, {"type": "image"}]})
    else:
        messages.append({"role": "user", "content": [{"type": "text", "text": txt}]})


    texts = processor.apply_chat_template(messages, add_generation_prompt=True)

    if images == []:
        inputs = processor(text=texts, return_tensors="pt").to("cuda")
    else:
        inputs = processor(text=texts, images=images, return_tensors="pt").to("cuda")
    streamer = TextIteratorStreamer(processor, skip_special_tokens=True, skip_prompt=True)

    generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=max_new_tokens)
    generated_text = ""
    
    thread = Thread(target=model.generate, kwargs=generation_kwargs)
    thread.start()
    buffer = ""
    
    for new_text in streamer:
        buffer += new_text
        generated_text_without_prompt = buffer
        time.sleep(0.01)
        yield buffer


demo = gr.ChatInterface(fn=bot_streaming, title="Document Analyzer", examples=[
    [{"text": "Which era does this piece belong to? Give details about the era.", "files":["./examples/rococo.jpg"]},
    200],
    [{"text": "Where do the droughts happen according to this diagram?", "files":["./examples/weather_events.png"]},
    250],
    [{"text": "What happens when you take out white cat from this chain?", "files":["./examples/ai2d_test.jpg"]},
    250],
    [{"text": "How long does it take from invoice date to due date? Be short and concise.", "files":["./examples/invoice.png"]},
    250],
    [{"text": "Where to find this monument? Can you give me other recommendations around the area?", "files":["./examples/wat_arun.jpg"]}, 
    250],
    ],
      textbox=gr.MultimodalTextbox(), 
      additional_inputs = [gr.Slider(
              minimum=10,
              maximum=500,
              value=2048,
              step=10,
              label="Maximum number of new tokens to generate",
          )
        ],
      cache_examples=False,
      description="MllM ",
      stop_btn="Stop Generation", 
      fill_height=True,
    multimodal=True)
    
demo.launch(debug=True)