File size: 4,629 Bytes
df30043
686ef17
df30043
686ef17
 
 
 
 
 
5b73cc5
 
 
 
 
 
df30043
6c13452
df30043
15d82cf
5b73cc5
 
 
 
 
 
 
 
 
 
 
 
686ef17
121a196
488a981
686ef17
df30043
 
5b73cc5
686ef17
 
5b73cc5
 
686ef17
5b73cc5
df30043
686ef17
 
 
5b73cc5
df30043
 
686ef17
5b73cc5
686ef17
5b73cc5
488a981
5b73cc5
 
 
 
 
 
 
 
 
 
df30043
686ef17
df30043
686ef17
df30043
 
5b73cc5
df30043
 
 
5b73cc5
df30043
488a981
 
686ef17
df30043
686ef17
df30043
686ef17
df30043
686ef17
df30043
686ef17
 
 
5b73cc5
 
 
 
 
 
 
 
 
488a981
5b73cc5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
686ef17
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
from transformers import MllamaForConditionalGeneration, AutoProcessor, TextIteratorStreamer
from PIL import Image
import requests
import torch
from threading import Thread
import gradio as gr
from gradio import FileData
import time
import spaces
from pdf2image import convert_from_path
import os
from PyPDF2 import PdfReader
import tempfile

ckpt = "Daemontatox/DocumentCogito"
model = MllamaForConditionalGeneration.from_pretrained(ckpt,
    torch_dtype=torch.bfloat16).to("cuda")
processor = AutoProcessor.from_pretrained(ckpt)

def process_pdf(pdf_path):
    """Convert PDF pages to images and extract text."""
    images = convert_from_path(pdf_path)
    pdf_reader = PdfReader(pdf_path)
    text = ""
    for page in pdf_reader.pages:
        text += page.extract_text() + "\n"
    return images, text

def is_pdf(file_path):
    """Check if the file is a PDF."""
    return file_path.lower().endswith('.pdf')

@spaces.GPU()
def bot_streaming(message, history, max_new_tokens=2048):
    txt = message["text"]
    ext_buffer = f"{txt}"
    
    messages = []
    images = []
    
    # Process history
    for i, msg in enumerate(history):
        if isinstance(msg[0], tuple):
            messages.append({"role": "user", "content": [{"type": "text", "text": history[i+1][0]}, {"type": "text", "text": history[i+1][1]}]})
            messages.append({"role": "assistant", "content": [{"type": "text", "text": history[i+1][1]}]})
            images.append(Image.open(msg[0][0]).convert("RGB"))
        elif isinstance(history[i-1], tuple) and isinstance(msg[0], str):
            pass
        elif isinstance(history[i-1][0], str) and isinstance(msg[0], str):
            messages.append({"role": "user", "content": [{"type": "text", "text": msg[0]}]})
            messages.append({"role": "assistant", "content": [{"type": "text", "text": msg[1]}]})

    # Process current message
    if len(message["files"]) == 1:
        file_path = message["files"][0]["path"] if isinstance(message["files"][0], dict) else message["files"][0]
        
        if is_pdf(file_path):
            # Handle PDF
            pdf_images, pdf_text = process_pdf(file_path)
            images.extend(pdf_images)
            txt = f"{txt}\nExtracted text from PDF:\n{pdf_text}"
        else:
            # Handle regular image
            image = Image.open(file_path).convert("RGB")
            images.append(image)
            
        messages.append({"role": "user", "content": [{"type": "text", "text": txt}, {"type": "image"}]})
    else:
        messages.append({"role": "user", "content": [{"type": "text", "text": txt}]})

    texts = processor.apply_chat_template(messages, add_generation_prompt=True)

    if not images:
        inputs = processor(text=texts, return_tensors="pt").to("cuda")
    else:
        inputs = processor(text=texts, images=images, return_tensors="pt").to("cuda")
    
    streamer = TextIteratorStreamer(processor, skip_special_tokens=True, skip_prompt=True)
    generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=max_new_tokens)
    generated_text = ""
    
    thread = Thread(target=model.generate, kwargs=generation_kwargs)
    thread.start()
    buffer = ""
    
    for new_text in streamer:
        buffer += new_text
        generated_text_without_prompt = buffer
        time.sleep(0.01)
        yield buffer

demo = gr.ChatInterface(
    fn=bot_streaming,
    title="Document Analyzer",
    examples=[
        [{"text": "Which era does this piece belong to? Give details about the era.", "files":["./examples/rococo.jpg"]}, 200],
        [{"text": "Where do the droughts happen according to this diagram?", "files":["./examples/weather_events.png"]}, 250],
        [{"text": "What happens when you take out white cat from this chain?", "files":["./examples/ai2d_test.jpg"]}, 250],
        [{"text": "How long does it take from invoice date to due date? Be short and concise.", "files":["./examples/invoice.png"]}, 250],
        [{"text": "Where to find this monument? Can you give me other recommendations around the area?", "files":["./examples/wat_arun.jpg"]}, 250],
    ],
    textbox=gr.MultimodalTextbox(),
    additional_inputs=[
        gr.Slider(
            minimum=10,
            maximum=500,
            value=2048,
            step=10,
            label="Maximum number of new tokens to generate",
        )
    ],
    cache_examples=False,
    description="MllM Document and PDF Analyzer",
    stop_btn="Stop Generation",
    fill_height=True,
    multimodal=True
)

# Update file types to include PDFs
demo.textbox.file_types = ["image", "pdf"]

demo.launch(debug=True)