Spaces:
Running
Running
File size: 4,629 Bytes
df30043 686ef17 df30043 686ef17 5b73cc5 df30043 6c13452 df30043 15d82cf 5b73cc5 686ef17 121a196 488a981 686ef17 df30043 5b73cc5 686ef17 5b73cc5 686ef17 5b73cc5 df30043 686ef17 5b73cc5 df30043 686ef17 5b73cc5 686ef17 5b73cc5 488a981 5b73cc5 df30043 686ef17 df30043 686ef17 df30043 5b73cc5 df30043 5b73cc5 df30043 488a981 686ef17 df30043 686ef17 df30043 686ef17 df30043 686ef17 df30043 686ef17 5b73cc5 488a981 5b73cc5 686ef17 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 |
from transformers import MllamaForConditionalGeneration, AutoProcessor, TextIteratorStreamer
from PIL import Image
import requests
import torch
from threading import Thread
import gradio as gr
from gradio import FileData
import time
import spaces
from pdf2image import convert_from_path
import os
from PyPDF2 import PdfReader
import tempfile
ckpt = "Daemontatox/DocumentCogito"
model = MllamaForConditionalGeneration.from_pretrained(ckpt,
torch_dtype=torch.bfloat16).to("cuda")
processor = AutoProcessor.from_pretrained(ckpt)
def process_pdf(pdf_path):
"""Convert PDF pages to images and extract text."""
images = convert_from_path(pdf_path)
pdf_reader = PdfReader(pdf_path)
text = ""
for page in pdf_reader.pages:
text += page.extract_text() + "\n"
return images, text
def is_pdf(file_path):
"""Check if the file is a PDF."""
return file_path.lower().endswith('.pdf')
@spaces.GPU()
def bot_streaming(message, history, max_new_tokens=2048):
txt = message["text"]
ext_buffer = f"{txt}"
messages = []
images = []
# Process history
for i, msg in enumerate(history):
if isinstance(msg[0], tuple):
messages.append({"role": "user", "content": [{"type": "text", "text": history[i+1][0]}, {"type": "text", "text": history[i+1][1]}]})
messages.append({"role": "assistant", "content": [{"type": "text", "text": history[i+1][1]}]})
images.append(Image.open(msg[0][0]).convert("RGB"))
elif isinstance(history[i-1], tuple) and isinstance(msg[0], str):
pass
elif isinstance(history[i-1][0], str) and isinstance(msg[0], str):
messages.append({"role": "user", "content": [{"type": "text", "text": msg[0]}]})
messages.append({"role": "assistant", "content": [{"type": "text", "text": msg[1]}]})
# Process current message
if len(message["files"]) == 1:
file_path = message["files"][0]["path"] if isinstance(message["files"][0], dict) else message["files"][0]
if is_pdf(file_path):
# Handle PDF
pdf_images, pdf_text = process_pdf(file_path)
images.extend(pdf_images)
txt = f"{txt}\nExtracted text from PDF:\n{pdf_text}"
else:
# Handle regular image
image = Image.open(file_path).convert("RGB")
images.append(image)
messages.append({"role": "user", "content": [{"type": "text", "text": txt}, {"type": "image"}]})
else:
messages.append({"role": "user", "content": [{"type": "text", "text": txt}]})
texts = processor.apply_chat_template(messages, add_generation_prompt=True)
if not images:
inputs = processor(text=texts, return_tensors="pt").to("cuda")
else:
inputs = processor(text=texts, images=images, return_tensors="pt").to("cuda")
streamer = TextIteratorStreamer(processor, skip_special_tokens=True, skip_prompt=True)
generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=max_new_tokens)
generated_text = ""
thread = Thread(target=model.generate, kwargs=generation_kwargs)
thread.start()
buffer = ""
for new_text in streamer:
buffer += new_text
generated_text_without_prompt = buffer
time.sleep(0.01)
yield buffer
demo = gr.ChatInterface(
fn=bot_streaming,
title="Document Analyzer",
examples=[
[{"text": "Which era does this piece belong to? Give details about the era.", "files":["./examples/rococo.jpg"]}, 200],
[{"text": "Where do the droughts happen according to this diagram?", "files":["./examples/weather_events.png"]}, 250],
[{"text": "What happens when you take out white cat from this chain?", "files":["./examples/ai2d_test.jpg"]}, 250],
[{"text": "How long does it take from invoice date to due date? Be short and concise.", "files":["./examples/invoice.png"]}, 250],
[{"text": "Where to find this monument? Can you give me other recommendations around the area?", "files":["./examples/wat_arun.jpg"]}, 250],
],
textbox=gr.MultimodalTextbox(),
additional_inputs=[
gr.Slider(
minimum=10,
maximum=500,
value=2048,
step=10,
label="Maximum number of new tokens to generate",
)
],
cache_examples=False,
description="MllM Document and PDF Analyzer",
stop_btn="Stop Generation",
fill_height=True,
multimodal=True
)
# Update file types to include PDFs
demo.textbox.file_types = ["image", "pdf"]
demo.launch(debug=True) |