File size: 4,117 Bytes
686ef17
 
 
 
 
 
 
 
 
15d82cf
 
 
 
 
 
 
 
 
 
 
686ef17
 
121a196
0318ee3
686ef17
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
166f705
686ef17
 
 
 
 
 
11ec7bf
686ef17
 
 
 
 
 
 
 
0318ee3
686ef17
 
 
 
 
166f705
686ef17
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
from transformers import MllamaForConditionalGeneration, AutoProcessor, TextIteratorStreamer
from PIL import Image
import requests
import torch
from threading import Thread
import gradio as gr
from gradio import FileData
import time
import spaces
from unsloth import FastVisionModel
ckpt ="Daemontatox/DocumentLlama"
#model = MllamaForConditionalGeneration.from_pretrained(ckpt,
    #torch_dtype=torch.bfloat16).to("cuda")
#processor = AutoProcessor.from_pretrained(ckpt)
model, tokenizer = FastVisionModel.from_pretrained(
    ckpt,
    load_in_4bit = True, # Use 4bit to reduce memory use. False for 16bit LoRA.
    use_gradient_checkpointing = "unsloth", # True or "unsloth" for long context
)



@spaces.GPU()
def bot_streaming(message, history, max_new_tokens=2048):
    
    txt = message["text"]
    ext_buffer = f"{txt}"
    
    messages= [] 
    images = []
    

    for i, msg in enumerate(history): 
        if isinstance(msg[0], tuple):
            messages.append({"role": "user", "content": [{"type": "text", "text": history[i+1][0]}, {"type": "image"}]})
            messages.append({"role": "assistant", "content": [{"type": "text", "text": history[i+1][1]}]})
            images.append(Image.open(msg[0][0]).convert("RGB"))
        elif isinstance(history[i-1], tuple) and isinstance(msg[0], str):
            # messages are already handled
            pass
        elif isinstance(history[i-1][0], str) and isinstance(msg[0], str): # text only turn
            messages.append({"role": "user", "content": [{"type": "text", "text": msg[0]}]})
            messages.append({"role": "assistant", "content": [{"type": "text", "text": msg[1]}]})

    # add current message
    if len(message["files"]) == 1:
        
        if isinstance(message["files"][0], str): # examples
            image = Image.open(message["files"][0]).convert("RGB")
        else: # regular input
            image = Image.open(message["files"][0]["path"]).convert("RGB")
        images.append(image)
        messages.append({"role": "user", "content": [{"type": "text", "text": txt}, {"type": "image"}]})
    else:
        messages.append({"role": "user", "content": [{"type": "text", "text": txt}]})


    texts = processor.apply_chat_template(messages, add_generation_prompt=True)

    if images == []:
        inputs = processor(text=texts, return_tensors="pt").to("cuda")
    else:
        inputs = processor(text=texts, images=images, return_tensors="pt").to("cuda")
    streamer = TextIteratorStreamer(processor, skip_special_tokens=True, skip_prompt=True)

    generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=max_new_tokens)
    generated_text = ""
    
    thread = Thread(target=model.generate, kwargs=generation_kwargs)
    thread.start()
    buffer = ""
    
    for new_text in streamer:
        buffer += new_text
        generated_text_without_prompt = buffer
        time.sleep(0.01)
        yield buffer


demo = gr.ChatInterface(fn=bot_streaming, title="Document Analyzer", examples=[
    [{"text": "Which era does this piece belong to? Give details about the era.", "files":["./examples/rococo.jpg"]},
    200],
    [{"text": "Where do the droughts happen according to this diagram?", "files":["./examples/weather_events.png"]},
    250],
    [{"text": "What happens when you take out white cat from this chain?", "files":["./examples/ai2d_test.jpg"]},
    250],
    [{"text": "How long does it take from invoice date to due date? Be short and concise.", "files":["./examples/invoice.png"]},
    250],
    [{"text": "Where to find this monument? Can you give me other recommendations around the area?", "files":["./examples/wat_arun.jpg"]}, 
    250],
    ],
      textbox=gr.MultimodalTextbox(), 
      additional_inputs = [gr.Slider(
              minimum=10,
              maximum=500,
              value=2048,
              step=10,
              label="Maximum number of new tokens to generate",
          )
        ],
      cache_examples=False,
      description="MllM ",
      stop_btn="Stop Generation", 
      fill_height=True,
    multimodal=True)
    
demo.launch(debug=True)