Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,332 +1,160 @@
|
|
1 |
-
import os
|
2 |
-
import re
|
3 |
-
import cohere
|
4 |
import gradio as gr
|
5 |
-
from
|
|
|
|
|
|
|
|
|
|
|
6 |
|
7 |
-
#
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
الخيارات الأسلوبية:
|
18 |
-
استخدم التشكيل فقط عند الضرورة لتوضيح المعنى.
|
19 |
-
تعامل مع الأسماء والأحرف المختصرة حسب السياق:
|
20 |
-
قم بتعريب الأسماء وأسماء الأدوية إلا إذا وُجدت لها مرادفات عربية.
|
21 |
-
ترجم أسماء البرامج والإدارات والهيئات عندما يكون ذلك مفيدًا.
|
22 |
-
استخدم الأرقام العربية وتأكد من التعامل الصحيح مع الوحدات والعناوين والمراجع.
|
23 |
-
علامات الترقيم:
|
24 |
-
طبق قواعد الترقيم العربية لضمان وضوح النص.
|
25 |
-
استخدم الفاصلة العربية (،) والفاصلة المنقوطة (؛) حسب الأعراف.
|
26 |
-
تجنب الإفراط في استخدام علامات الاقتباس واحرص على وضع النقطتين (:) بشكل منطقي.
|
27 |
-
الأخطاء الشائعة التي يجب تجنبها:
|
28 |
-
تجنب ترجمة "is" بـ "يُعتبر" إلا إذا كان ذلك مناسبًا للسياق.
|
29 |
-
استخدم حروف الجر والعطف بشكل صحيح لضمان تدفق الجمل بسلاسة.
|
30 |
-
قلل من التكرار واستخدم الضمائر حيثما أمكن.
|
31 |
-
تجنب الإفراط في استخدام تراكيب مثل "(قام + الفعل)" و"الخاص بـ."
|
32 |
-
المصطلحات المحددة:
|
33 |
-
في الترجمات القانونية، حافظ على النبرة الرسمية وتأكد من دقة المصطلحات.
|
34 |
-
في الترجمات الطبية، بسّط المصطلحات التقنية للجمهور العام مع الاحتفاظ بالتعقيد عند مخاطبة المتخصصين.
|
35 |
-
في الترجمات التسويقية، ركّز على الإبداع بدلًا من الترجمة الحرفية، مع الحفاظ على الرسالة الأساسية.
|
36 |
-
إرشادات التنسيق:
|
37 |
-
التزم بمعايير الطباعة العربية بشكل متسق.
|
38 |
-
حافظ على تنسيق البيانات المهمة (مثل التواريخ، والقياسات، والاستشهادات القانونية).
|
39 |
-
عند الشك:
|
40 |
-
قدم الأولوية للوضوح، والتناسق، والملاءمة مع احتياجات الجمهور المستهدف. قم دائمًا بموازنة التعليمات الخاصة بالمشروع مع هذه الإرشادات، مع إعطاء الأولوية لمتطلبات العميل عند وجود أي تعارض.
|
41 |
-
"""
|
42 |
|
43 |
-
|
44 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
|
46 |
CSS = """
|
47 |
-
.
|
48 |
-
|
49 |
-
|
50 |
-
background: black !important;
|
51 |
-
border-radius: 100vh !important;
|
52 |
-
}
|
53 |
-
h3 {
|
54 |
-
text-align: center;
|
55 |
-
}
|
56 |
-
.message-wrap {
|
57 |
-
overflow-x: auto;
|
58 |
-
}
|
59 |
-
.message-wrap p {
|
60 |
-
margin-bottom: 1em;
|
61 |
-
}
|
62 |
-
.message-wrap pre {
|
63 |
-
background-color: #f6f8fa;
|
64 |
-
border-radius: 3px;
|
65 |
-
padding: 16px;
|
66 |
-
overflow-x: auto;
|
67 |
-
}
|
68 |
-
.message-wrap code {
|
69 |
-
background-color: rgba(175,184,193,0.2);
|
70 |
-
border-radius: 3px;
|
71 |
-
padding: 0.2em 0.4em;
|
72 |
-
font-family: monospace;
|
73 |
-
}
|
74 |
-
.custom-tag {
|
75 |
-
color: #0066cc;
|
76 |
-
font-weight: bold;
|
77 |
-
}
|
78 |
-
.chat-area {
|
79 |
-
height: 500px !important;
|
80 |
-
overflow-y: auto !important;
|
81 |
-
}
|
82 |
-
.arabic-input {
|
83 |
-
direction: rtl;
|
84 |
-
text-align: right;
|
85 |
-
font-family: 'Arabic', Arial, sans-serif;
|
86 |
-
}
|
87 |
"""
|
88 |
|
89 |
-
def
|
90 |
-
"""
|
91 |
-
return
|
|
|
|
|
|
|
|
|
92 |
|
93 |
-
def
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
]
|
105 |
-
|
106 |
-
formatted = text
|
107 |
-
for pattern, replacement in tag_patterns:
|
108 |
-
formatted = re.sub(pattern, replacement, formatted)
|
109 |
|
110 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
111 |
|
112 |
-
|
|
|
|
|
113 |
|
114 |
-
def
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
122 |
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
"
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
142 |
|
143 |
-
|
144 |
-
|
145 |
-
history: List[List[str]],
|
146 |
-
chat_display: str,
|
147 |
-
system_prompt: str,
|
148 |
-
temperature: float = 0,
|
149 |
-
max_new_tokens: int = 8192,
|
150 |
-
top_p: float = 0.8,
|
151 |
-
top_k: int = 40,
|
152 |
-
penalty: float = 1.2,
|
153 |
-
api_key: str = os.getenv("COHERE_API_KEY")
|
154 |
-
) -> Iterator[Tuple[List[List[str]], str]]:
|
155 |
-
"""Generate chat responses using Cohere API"""
|
156 |
-
co = cohere.Client(api_key=api_key)
|
157 |
|
158 |
-
#
|
159 |
-
chat_history
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
160 |
|
161 |
-
|
162 |
-
|
163 |
-
history = history + [[message, ""]]
|
164 |
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
model='c4ai-aya-expanse-32b',
|
170 |
-
message=message,
|
171 |
-
temperature=temperature,
|
172 |
-
chat_history=chat_history,
|
173 |
-
prompt_truncation='AUTO',
|
174 |
-
preamble=system_prompt
|
175 |
-
)
|
176 |
-
|
177 |
-
for event in stream:
|
178 |
-
if event.event_type == "text-generation":
|
179 |
-
buffer += event.text
|
180 |
-
formatted_buffer = format_text(buffer)
|
181 |
-
history[-1][1] = formatted_buffer
|
182 |
-
chat_display = format_chat_history(history)
|
183 |
-
yield history, chat_display
|
184 |
-
|
185 |
-
except Exception as e:
|
186 |
-
error_message = f"Error: {str(e)}"
|
187 |
-
history[-1][1] = error_message
|
188 |
-
chat_display = format_chat_history(history)
|
189 |
-
yield history, chat_display
|
190 |
-
|
191 |
-
def process_example(example: str) -> tuple:
|
192 |
-
"""Process example query and return empty history and updated display"""
|
193 |
-
return [], f"User: {example}\n\n"
|
194 |
|
195 |
-
|
196 |
-
"""Main function to set up and launch the Gradio interface"""
|
197 |
-
with gr.Blocks(css=CSS, theme="JohnSmith9982/small_and_pretty'") as demo:
|
198 |
-
gr.HTML(TITLE)
|
199 |
-
gr.DuplicateButton(
|
200 |
-
value="",
|
201 |
-
elem_classes="duplicate-button"
|
202 |
-
)
|
203 |
-
|
204 |
-
with gr.Row():
|
205 |
-
with gr.Column():
|
206 |
-
chat_history = gr.State([])
|
207 |
-
chat_display = gr.TextArea(
|
208 |
-
value="",
|
209 |
-
label="Chat History",
|
210 |
-
interactive=True,
|
211 |
-
elem_classes=["chat-area"],
|
212 |
-
)
|
213 |
-
|
214 |
-
message = gr.TextArea(
|
215 |
-
placeholder=PLACEHOLDER,
|
216 |
-
label="Your message",
|
217 |
-
lines=3,
|
218 |
-
elem_classes=["message-input"]
|
219 |
-
)
|
220 |
-
|
221 |
-
with gr.Row():
|
222 |
-
submit = gr.Button("Send")
|
223 |
-
clear = gr.Button("Clear")
|
224 |
-
|
225 |
-
with gr.Accordion("⚙️ Advanced Settings", open=False):
|
226 |
-
system_prompt = gr.TextArea(
|
227 |
-
value=DEFAULT_SYSTEM_PROMPT,
|
228 |
-
label="System Prompt",
|
229 |
-
lines=7,
|
230 |
-
)
|
231 |
-
temperature = gr.Slider(
|
232 |
-
minimum=0,
|
233 |
-
maximum=1,
|
234 |
-
step=0.1,
|
235 |
-
value=0,
|
236 |
-
label="Temperature",
|
237 |
-
)
|
238 |
-
max_tokens = gr.Slider(
|
239 |
-
minimum=128,
|
240 |
-
maximum=32000,
|
241 |
-
step=128,
|
242 |
-
value=8192,
|
243 |
-
label="Max Tokens",
|
244 |
-
)
|
245 |
-
top_p = gr.Slider(
|
246 |
-
minimum=0.1,
|
247 |
-
maximum=1.0,
|
248 |
-
step=0.1,
|
249 |
-
value=0.8,
|
250 |
-
label="Top-p",
|
251 |
-
)
|
252 |
-
top_k = gr.Slider(
|
253 |
-
minimum=1,
|
254 |
-
maximum=100,
|
255 |
-
step=1,
|
256 |
-
value=40,
|
257 |
-
label="Top-k",
|
258 |
-
)
|
259 |
-
penalty = gr.Slider(
|
260 |
-
minimum=1.0,
|
261 |
-
maximum=2.0,
|
262 |
-
step=0.1,
|
263 |
-
value=1.2,
|
264 |
-
label="Repetition Penalty",
|
265 |
-
)
|
266 |
-
|
267 |
-
examples = gr.Examples(
|
268 |
-
examples=create_examples(),
|
269 |
-
inputs=[message],
|
270 |
-
outputs=[chat_history, chat_display],
|
271 |
-
fn=process_example,
|
272 |
-
cache_examples=False,
|
273 |
-
)
|
274 |
-
|
275 |
-
# JavaScript to handle Enter key submission and RTL direction
|
276 |
-
js_handler = """
|
277 |
-
function handleKeyPress(textArea, submitButton) {
|
278 |
-
textArea.addEventListener('keydown', function(e) {
|
279 |
-
// Check for Arabic characters
|
280 |
-
const containsArabic = /[\u0600-\u06FF]/.test(textArea.value);
|
281 |
-
|
282 |
-
// Apply RTL class for Arabic text
|
283 |
-
if (containsArabic) {
|
284 |
-
textArea.classList.add('arabic-input');
|
285 |
-
} else {
|
286 |
-
textArea.classList.remove('arabic-input');
|
287 |
-
}
|
288 |
-
|
289 |
-
// Handle Enter key for submission (without Shift)
|
290 |
-
if (e.key === 'Enter' && !e.shiftKey) {
|
291 |
-
e.preventDefault(); // Prevent default new line
|
292 |
-
submitButton.click(); // Trigger submit button click
|
293 |
-
}
|
294 |
-
});
|
295 |
-
}
|
296 |
-
"""
|
297 |
-
|
298 |
-
# Set up event handlers
|
299 |
-
submit_click = submit.click(
|
300 |
-
chat_response,
|
301 |
-
inputs=[
|
302 |
-
message,
|
303 |
-
chat_history,
|
304 |
-
chat_display,
|
305 |
-
system_prompt,
|
306 |
-
temperature,
|
307 |
-
max_tokens,
|
308 |
-
top_p,
|
309 |
-
top_k,
|
310 |
-
penalty,
|
311 |
-
],
|
312 |
-
outputs=[chat_history, chat_display],
|
313 |
-
show_progress=True,
|
314 |
-
)
|
315 |
-
|
316 |
-
# Clear input after submission
|
317 |
-
submit_click.then(lambda: "", outputs=message)
|
318 |
-
|
319 |
-
# Add JavaScript to handle Enter key and RTL
|
320 |
-
demo.load(None, inputs=[message, submit], js=js_handler)
|
321 |
-
|
322 |
-
clear.click(
|
323 |
-
lambda: ([], ""),
|
324 |
-
outputs=[chat_history, chat_display],
|
325 |
-
show_progress=True,
|
326 |
-
)
|
327 |
|
328 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
329 |
|
330 |
if __name__ == "__main__":
|
331 |
-
|
332 |
-
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
+
from threading import Thread
|
3 |
+
import requests
|
4 |
+
from typing import List, Tuple
|
5 |
+
import json
|
6 |
+
import os
|
7 |
+
from queue import Queue
|
8 |
|
9 |
+
# Replace with your Hugging Face API token
|
10 |
+
HF_API_TOKEN = os.getenv("HF_API_TOKEN")
|
11 |
+
API_URL = f"https://api-inference.huggingface.co/models/FuseAI/FuseO1-DeepSeekR1-QwQ-SkyT1-32B-Preview"
|
12 |
+
|
13 |
+
DEFAULT_SYSTEM_PROMPT = """
|
14 |
+
You are an Advanced AI Coding Assistant, designed to solve complex challenges and deliver efficient, dependable solutions. Follow this structured workflow for every task:
|
15 |
+
|
16 |
+
1. Understand: Analyze the problem thoroughly. Identify core objectives, resolve ambiguities, and ask clarifying questions if needed to ensure a complete understanding.
|
17 |
+
|
18 |
+
2. Plan: Outline a clear, step-by-step approach, detailing the tools, frameworks, and algorithms required to achieve the solution effectively.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
|
20 |
+
3. Implement: Execute the plan with well-structured, efficient, and well-commented code. Provide a clear explanation of your thought process and the rationale behind key decisions as you proceed.
|
21 |
+
|
22 |
+
4. Validate: Test the solution rigorously to ensure accuracy, efficiency, and alignment with best practices. Debug and optimize where necessary.
|
23 |
+
|
24 |
+
5. Conclude: Summarize the solution with a clear conclusion, highlighting its effectiveness. Suggest improvements, optimizations, or alternative approaches if applicable.
|
25 |
+
|
26 |
+
Guiding Principles:
|
27 |
+
Use code as a tool for reasoning, with clear and educational explanations.
|
28 |
+
Prioritize code readability, scalability, and maintainability.
|
29 |
+
Adapt explanations to the user's skill level to maximize learning value.
|
30 |
+
Refine solutions iteratively, incorporating feedback or evolving requirements.
|
31 |
+
"""
|
32 |
|
33 |
CSS = """
|
34 |
+
.gr-chatbot { min-height: 500px; border-radius: 15px; }
|
35 |
+
.special-tag { color: #2ecc71; font-weight: 600; }
|
36 |
+
footer { display: none !important; }
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
"""
|
38 |
|
39 |
+
def format_response(text: str) -> str:
|
40 |
+
"""Format the response by adding HTML styling to special tags."""
|
41 |
+
return text.replace("[Understand]", '\n<strong class="special-tag">[Understand]</strong>\n') \
|
42 |
+
.replace("[Plan]", '\n<strong class="special-tag">[Plan]</strong>\n') \
|
43 |
+
.replace("[Conclude]", '\n<strong class="special-tag">[Conclude]</strong>\n') \
|
44 |
+
.replace("[Reason]", '\n<strong class="special-tag">[Reason]</strong>\n') \
|
45 |
+
.replace("[Verify]", '\n<strong class="special-tag">[Verify]</strong>\n')
|
46 |
|
47 |
+
def query_huggingface(
|
48 |
+
payload: dict,
|
49 |
+
api_url: str = API_URL,
|
50 |
+
headers: dict = {"Authorization": f"Bearer {HF_API_TOKEN}"}
|
51 |
+
) -> requests.Response:
|
52 |
+
"""Send a request to the Hugging Face API endpoint."""
|
53 |
+
return requests.post(api_url, headers=headers, json=payload)
|
54 |
+
|
55 |
+
def stream_response(response_queue: Queue, chat_history: List[Tuple[str, str]], message: str):
|
56 |
+
"""Stream the response from the API and update the chat history."""
|
57 |
+
partial_message = ""
|
58 |
+
new_history = chat_history + [(message, "")]
|
|
|
|
|
|
|
|
|
59 |
|
60 |
+
while True:
|
61 |
+
try:
|
62 |
+
token = response_queue.get()
|
63 |
+
if token is None: # End of stream
|
64 |
+
break
|
65 |
+
|
66 |
+
partial_message += token
|
67 |
+
formatted = format_response(partial_message)
|
68 |
+
new_history[-1] = (message, formatted + "▌")
|
69 |
+
yield new_history
|
70 |
+
|
71 |
+
except Exception as e:
|
72 |
+
print(f"Error in streaming: {e}")
|
73 |
+
break
|
74 |
|
75 |
+
# Final update without cursor
|
76 |
+
new_history[-1] = (message, format_response(partial_message))
|
77 |
+
yield new_history
|
78 |
|
79 |
+
def generate_response(
|
80 |
+
message: str,
|
81 |
+
chat_history: List[Tuple[str, str]],
|
82 |
+
system_prompt: str,
|
83 |
+
temperature: float,
|
84 |
+
max_tokens: int
|
85 |
+
) -> List[Tuple[str, str]]:
|
86 |
+
"""Generate a response using the Hugging Face API."""
|
87 |
+
# Create conversation history
|
88 |
+
conversation = [{"role": "system", "content": system_prompt}]
|
89 |
+
for user_msg, bot_msg in chat_history:
|
90 |
+
conversation.extend([
|
91 |
+
{"role": "user", "content": user_msg},
|
92 |
+
{"role": "assistant", "content": bot_msg}
|
93 |
+
])
|
94 |
+
conversation.append({"role": "user", "content": message})
|
95 |
|
96 |
+
# Prepare the payload
|
97 |
+
payload = {
|
98 |
+
"inputs": conversation,
|
99 |
+
"parameters": {
|
100 |
+
"max_new_tokens": max_tokens,
|
101 |
+
"temperature": temperature,
|
102 |
+
"stream": True
|
103 |
+
}
|
104 |
+
}
|
105 |
|
106 |
+
# Create a queue for streaming tokens
|
107 |
+
response_queue = Queue()
|
108 |
+
|
109 |
+
def process_stream():
|
110 |
+
try:
|
111 |
+
response = query_huggingface(payload)
|
112 |
+
|
113 |
+
# Parse streaming response
|
114 |
+
for line in response.iter_lines():
|
115 |
+
if line:
|
116 |
+
json_response = json.loads(line)
|
117 |
+
if "token" in json_response:
|
118 |
+
response_queue.put(json_response["token"]["text"])
|
119 |
+
|
120 |
+
response_queue.put(None) # Signal end of stream
|
121 |
+
except Exception as e:
|
122 |
+
print(f"Error in API call: {e}")
|
123 |
+
response_queue.put(None)
|
124 |
|
125 |
+
# Start processing thread
|
126 |
+
Thread(target=process_stream).start()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
127 |
|
128 |
+
# Return generator for streaming
|
129 |
+
return stream_response(response_queue, chat_history, message)
|
130 |
+
|
131 |
+
# Create Gradio interface
|
132 |
+
with gr.Blocks(css=CSS, theme=gr.themes.Soft()) as demo:
|
133 |
+
gr.Markdown("""
|
134 |
+
<h1 align="center">🧠 AI Reasoning Assistant</h1>
|
135 |
+
<p align="center">Ask me Hard questions</p>
|
136 |
+
""")
|
137 |
|
138 |
+
chatbot = gr.Chatbot(label="Conversation", elem_id="chatbot")
|
139 |
+
msg = gr.Textbox(label="Your Question", placeholder="Type your question...")
|
|
|
140 |
|
141 |
+
with gr.Accordion("⚙️ Settings", open=False):
|
142 |
+
system_prompt = gr.TextArea(value=DEFAULT_SYSTEM_PROMPT, label="System Instructions")
|
143 |
+
temperature = gr.Slider(0, 1, value=0.5, label="Creativity")
|
144 |
+
max_tokens = gr.Slider(128, 4096, value=2048, label="Max Response Length")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
145 |
|
146 |
+
clear = gr.Button("Clear History")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
147 |
|
148 |
+
msg.submit(
|
149 |
+
generate_response,
|
150 |
+
[msg, chatbot, system_prompt, temperature, max_tokens],
|
151 |
+
[chatbot],
|
152 |
+
show_progress=True
|
153 |
+
)
|
154 |
+
clear.click(lambda: None, None, chatbot, queue=False)
|
155 |
|
156 |
if __name__ == "__main__":
|
157 |
+
if not HF_API_TOKEN:
|
158 |
+
print("Please set your Hugging Face API token as environment variable HF_API_TOKEN")
|
159 |
+
else:
|
160 |
+
demo.queue().launch()
|