MatveyDM028 commited on
Commit
fb8bce6
·
verified ·
1 Parent(s): ea736fb

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +53 -59
app.py CHANGED
@@ -1,64 +1,58 @@
1
- import gradio as gr
 
2
  from huggingface_hub import InferenceClient
3
 
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("Qwen/Qwen2.5-Coder-32B-Instruct")
8
-
9
-
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
19
-
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
-
26
- messages.append({"role": "user", "content": message})
27
-
28
- response = ""
29
-
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
-
39
- response += token
40
- yield response
41
-
42
-
43
- """
44
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
- """
46
- demo = gr.ChatInterface(
47
- respond,
48
- additional_inputs=[
49
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
50
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
- gr.Slider(
53
- minimum=0.1,
54
- maximum=1.0,
55
- value=0.95,
56
- step=0.05,
57
- label="Top-p (nucleus sampling)",
58
- ),
59
- ],
60
- )
61
 
 
 
62
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
63
  if __name__ == "__main__":
64
- demo.launch()
 
 
1
+ from fastapi import FastAPI, HTTPException
2
+ from pydantic import BaseModel
3
  from huggingface_hub import InferenceClient
4
 
5
+ # Инициализация FastAPI
6
+ app = FastAPI()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7
 
8
+ # Инициализация клиента для модели
9
+ client = InferenceClient("Qwen/Qwen2.5-Coder-32B-Instruct")
10
 
11
+ # Модель данных для запроса
12
+ class ChatRequest(BaseModel):
13
+ message: str
14
+ history: list[tuple[str, str]] = []
15
+ system_message: str = "You are a friendly Chatbot."
16
+ max_tokens: int = 512
17
+ temperature: float = 0.7
18
+ top_p: float = 0.95
19
+
20
+ # Маршрут для обработки запросов
21
+ @app.post("/chat")
22
+ async def chat(request: ChatRequest):
23
+ try:
24
+ # Формируем сообщения для модели
25
+ messages = [{"role": "system", "content": request.system_message}]
26
+
27
+ # Добавляем историю диалога
28
+ for user_msg, assistant_msg in request.history:
29
+ if user_msg:
30
+ messages.append({"role": "user", "content": user_msg})
31
+ if assistant_msg:
32
+ messages.append({"role": "assistant", "content": assistant_msg})
33
+
34
+ # Добавляем текущее сообщение пользователя
35
+ messages.append({"role": "user", "content": request.message})
36
+
37
+ # Получаем ответ от модели
38
+ response = ""
39
+ for message in client.chat_completion(
40
+ messages,
41
+ max_tokens=request.max_tokens,
42
+ stream=True,
43
+ temperature=request.temperature,
44
+ top_p=request.top_p,
45
+ ):
46
+ token = message.choices[0].delta.content
47
+ response += token
48
+
49
+ # Возвращаем ответ
50
+ return {"response": response}
51
+
52
+ except Exception as e:
53
+ raise HTTPException(status_code=500, detail=str(e))
54
+
55
+ # Запуск приложения (для локального тестирования)
56
  if __name__ == "__main__":
57
+ import uvicorn
58
+ uvicorn.run(app, host="0.0.0.0", port=7860)