Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -4,17 +4,19 @@ import torch
|
|
4 |
import os
|
5 |
from dotenv import load_dotenv
|
6 |
|
|
|
7 |
load_dotenv()
|
8 |
-
|
9 |
api_key = os.getenv("api_key")
|
|
|
10 |
# App title and description
|
11 |
st.title("I am Your GrowBuddy 🌱")
|
12 |
st.write("Let me help you start gardening. Let's grow together!")
|
13 |
|
|
|
14 |
def load_model():
|
15 |
try:
|
16 |
-
tokenizer = AutoTokenizer.from_pretrained("KhunPop/Gardening",
|
17 |
-
model = AutoModelForCausalLM.from_pretrained("
|
18 |
return tokenizer, model
|
19 |
except Exception as e:
|
20 |
st.error(f"Failed to load model: {e}")
|
@@ -30,46 +32,45 @@ if not tokenizer or not model:
|
|
30 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
31 |
model = model.to(device)
|
32 |
|
33 |
-
# Initialize session state messages
|
34 |
if "messages" not in st.session_state:
|
35 |
st.session_state.messages = [
|
36 |
{"role": "assistant", "content": "Hello there! How can I help you with gardening today?"}
|
37 |
]
|
38 |
|
39 |
-
# Display
|
40 |
for message in st.session_state.messages:
|
41 |
with st.chat_message(message["role"]):
|
42 |
st.write(message["content"])
|
43 |
|
|
|
44 |
def generate_response(prompt):
|
45 |
try:
|
46 |
-
# Tokenize
|
47 |
inputs = tokenizer(prompt, return_tensors="pt", truncation=True, padding=True, max_length=512).to(device)
|
48 |
|
49 |
-
#
|
50 |
-
outputs = model.generate(inputs["input_ids"], max_new_tokens=
|
51 |
|
52 |
-
# Decode
|
53 |
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
54 |
return response
|
55 |
except Exception as e:
|
56 |
st.error(f"Error during text generation: {e}")
|
57 |
return "Sorry, I couldn't process your request."
|
58 |
|
59 |
-
# User input field for
|
60 |
user_input = st.chat_input("Type your gardening question here:")
|
61 |
|
62 |
if user_input:
|
63 |
-
# Display user message
|
64 |
with st.chat_message("user"):
|
65 |
st.write(user_input)
|
66 |
|
67 |
-
# Generate and display assistant's response
|
68 |
with st.chat_message("assistant"):
|
69 |
-
with st.spinner("
|
70 |
response = generate_response(user_input)
|
71 |
st.write(response)
|
72 |
|
73 |
-
# Update session state
|
74 |
st.session_state.messages.append({"role": "user", "content": user_input})
|
75 |
st.session_state.messages.append({"role": "assistant", "content": response})
|
|
|
4 |
import os
|
5 |
from dotenv import load_dotenv
|
6 |
|
7 |
+
# Load environment variables
|
8 |
load_dotenv()
|
|
|
9 |
api_key = os.getenv("api_key")
|
10 |
+
|
11 |
# App title and description
|
12 |
st.title("I am Your GrowBuddy 🌱")
|
13 |
st.write("Let me help you start gardening. Let's grow together!")
|
14 |
|
15 |
+
# Function to load model
|
16 |
def load_model():
|
17 |
try:
|
18 |
+
tokenizer = AutoTokenizer.from_pretrained("KhunPop/Gardening", use_auth_token=api_key)
|
19 |
+
model = AutoModelForCausalLM.from_pretrained("QuantFactory/leniachat-gemma-2b-v0-GGUF", use_auth_token=api_key)
|
20 |
return tokenizer, model
|
21 |
except Exception as e:
|
22 |
st.error(f"Failed to load model: {e}")
|
|
|
32 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
33 |
model = model.to(device)
|
34 |
|
35 |
+
# Initialize session state messages
|
36 |
if "messages" not in st.session_state:
|
37 |
st.session_state.messages = [
|
38 |
{"role": "assistant", "content": "Hello there! How can I help you with gardening today?"}
|
39 |
]
|
40 |
|
41 |
+
# Display conversation history
|
42 |
for message in st.session_state.messages:
|
43 |
with st.chat_message(message["role"]):
|
44 |
st.write(message["content"])
|
45 |
|
46 |
+
# Function to generate response
|
47 |
def generate_response(prompt):
|
48 |
try:
|
49 |
+
# Tokenize input prompt with dynamic padding and truncation
|
50 |
inputs = tokenizer(prompt, return_tensors="pt", truncation=True, padding=True, max_length=512).to(device)
|
51 |
|
52 |
+
# Generate output from model
|
53 |
+
outputs = model.generate(inputs["input_ids"], max_new_tokens=100, temperature=0.7, do_sample=True)
|
54 |
|
55 |
+
# Decode and return response
|
56 |
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
57 |
return response
|
58 |
except Exception as e:
|
59 |
st.error(f"Error during text generation: {e}")
|
60 |
return "Sorry, I couldn't process your request."
|
61 |
|
62 |
+
# User input field for gardening questions
|
63 |
user_input = st.chat_input("Type your gardening question here:")
|
64 |
|
65 |
if user_input:
|
|
|
66 |
with st.chat_message("user"):
|
67 |
st.write(user_input)
|
68 |
|
|
|
69 |
with st.chat_message("assistant"):
|
70 |
+
with st.spinner("Generating your answer..."):
|
71 |
response = generate_response(user_input)
|
72 |
st.write(response)
|
73 |
|
74 |
+
# Update session state
|
75 |
st.session_state.messages.append({"role": "user", "content": user_input})
|
76 |
st.session_state.messages.append({"role": "assistant", "content": response})
|