Spaces:
Runtime error
Runtime error
import gradio as gr | |
from gradio_pdf import PDF | |
from qdrant_client import models, QdrantClient | |
from sentence_transformers import SentenceTransformer | |
from PyPDF2 import PdfReader | |
from langchain.text_splitter import RecursiveCharacterTextSplitter | |
from langchain.callbacks.manager import CallbackManager | |
from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler | |
from langchain.vectorstores import Qdrant | |
from transformers import AutoModelForCausalLM | |
# Load the embedding model | |
encoder = SentenceTransformer('jinaai/jina-embedding-b-en-v1') | |
print("Embedding model loaded...") | |
# Load the LLM | |
callback_manager = CallbackManager([StreamingStdOutCallbackHandler()]) | |
''' | |
llm = AutoModelForCausalLM.from_pretrained( | |
"TheBloke/Llama-2-7B-Chat-GGUF", | |
model_file="llama-2-7b-chat.Q3_K_S.gguf", | |
model_type="llama", | |
temperature=0.2, | |
repetition_penalty=1.5, | |
max_new_tokens=300, | |
) | |
''' | |
llm = LlamaCpp( | |
model_path="./llama-2-7b-chat.Q3_K_S.gguf", | |
temperature = 0.2, | |
n_ctx=2048, | |
f16_kv=True, # MUST set to True, otherwise you will run into problem after a couple of calls | |
max_tokens = 500, | |
callback_manager=callback_manager, | |
verbose=True, | |
) | |
print("LLM loaded...") | |
client = QdrantClient(path="./db") | |
def setup_database(files): | |
all_chunks = [] | |
for file in files: | |
pdf_path = file | |
reader = PdfReader(pdf_path) | |
text = "".join(page.extract_text() for page in reader.pages if page.extract_text()) | |
text_splitter = RecursiveCharacterTextSplitter(chunk_size=250, chunk_overlap=50, length_function=len) | |
chunks = text_splitter.split_text(text) | |
all_chunks.extend(chunks) | |
print(f"Total chunks: {len(all_chunks)}") | |
client.recreate_collection( | |
collection_name="my_facts", | |
vectors_config=models.VectorParams( | |
size=encoder.get_sentence_embedding_dimension(), | |
distance=models.Distance.COSINE, | |
), | |
) | |
print("Collection created...") | |
for idx, chunk in enumerate(all_chunks): | |
client.upload_record( | |
collection_name="my_facts", | |
record=models.Record( | |
id=idx, | |
vector=encoder.encode(chunk).tolist(), | |
payload={"text": chunk} | |
) | |
) | |
print("Records uploaded...") | |
def answer(question): | |
hits = client.search( | |
collection_name="my_facts", | |
query_vector=encoder.encode(question).tolist(), | |
limit=3 | |
) | |
context = " ".join(hit.payload["text"] for hit in hits) | |
system_prompt = "You are a helpful co-worker. Use the provided context to answer user questions. Do not use any other information." | |
prompt = f"Context: {context}\nUser: {question}\n{system_prompt}" | |
response = llm(prompt) | |
return response | |
def chat(messages): | |
if not messages: | |
return "Please upload PDF documents to initialize the database." | |
last_message = messages[-1] | |
return answer(last_message["message"]) | |
screen = gr.Interface( | |
fn=chat, | |
inputs=gr.Textbox(placeholder="Type your question here..."), | |
outputs="chatbot", | |
title="Q&A with PDFs 👩🏻💻📓✍🏻💡", | |
description="This app facilitates a conversation with PDFs uploaded💡", | |
theme="soft", | |
live=True, | |
allow_screenshot=False, | |
allow_flagging=False, | |
) | |
# Add a way to upload and setup the database before starting the chat | |
screen.launch() | |