Spaces:
Runtime error
Runtime error
File size: 4,022 Bytes
9057f38 32e37e9 9057f38 4c6bffd 32e37e9 9057f38 4c6bffd 9057f38 32e37e9 9057f38 4c6bffd 32e37e9 9057f38 4c6bffd 9057f38 32e37e9 4c6bffd 32e37e9 9057f38 32e37e9 4c6bffd 9057f38 4c6bffd 9057f38 4c6bffd 32e37e9 4c6bffd 9057f38 32e37e9 4c6bffd 32e37e9 9057f38 4c6bffd 9057f38 4c6bffd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 |
import gradio as gr
from qdrant_client import models, QdrantClient
from sentence_transformers import SentenceTransformer
from PyPDF2 import PdfReader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.callbacks.manager import CallbackManager
from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
from ctransformers import AutoModelForCausalLM
# Load the embedding model
encoder = SentenceTransformer('jinaai/jina-embedding-b-en-v1')
print("Embedding model loaded...")
# Load the LLM
callback_manager = CallbackManager([StreamingStdOutCallbackHandler()])
llm = AutoModelForCausalLM.from_pretrained(
"TheBloke/Llama-2-7B-Chat-GGUF",
model_file="llama-2-7b-chat.Q3_K_S.gguf",
model_type="llama",
temperature=0.2,
repetition_penalty=1.5,
max_new_tokens=300,
)
print("LLM loaded...")
# Initialize QdrantClient
client = QdrantClient(path="./db")
print("DB created...")
def get_chunks(text):
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=250,
chunk_overlap=50,
length_function=len,
)
return text_splitter.split_text(text)
def setup_database(files):
all_chunks = []
for file in files:
reader = PdfReader(file)
text = "".join(page.extract_text() for page in reader.pages)
chunks = get_chunks(text)
all_chunks.extend(chunks)
print(f"Total chunks: {len(all_chunks)}")
print("Chunks are ready...")
client.recreate_collection(
collection_name="my_facts",
vectors_config=models.VectorParams(
size=encoder.get_sentence_embedding_dimension(),
distance=models.Distance.COSINE,
),
)
print("Collection created...")
records = [
models.Record(
id=idx,
vector=encoder.encode(chunk).tolist(),
payload={"text": chunk}
) for idx, chunk in enumerate(all_chunks)
]
client.upload_records(
collection_name="my_facts",
records=records,
)
print("Records uploaded...")
def answer(question):
hits = client.search(
collection_name="my_facts",
query_vector=encoder.encode(question).tolist(),
limit=3
)
context = " ".join(hit.payload["text"] for hit in hits)
system_prompt = """You are a helpful co-worker, you will use the provided context to answer user questions.
Read the given context before answering questions and think step by step. If you cannot answer a user question based on
the provided context, inform the user. Do not use any other information for answering user. Provide a detailed answer to the question."""
B_INST, E_INST = "[INST]", "[/INST]"
B_SYS, E_SYS = "<<SYS>>\n", "\n<</SYS>>\n\n"
instruction = f"Context: {context}\nUser: {question}"
prompt_template = f"{B_INST}{B_SYS}{system_prompt}{E_SYS}{instruction}{E_INST}"
print(prompt_template)
result = llm(prompt_template)
return result
def chat(messages, files):
if files:
setup_database(files)
if not messages:
return "Please upload PDF documents to initialize the database."
last_message = messages[-1]["content"]
response = answer(last_message)
messages.append({"role": "assistant", "content": response})
return messages
with gr.Blocks() as demo:
chatbot = gr.Chatbot()
file_input = gr.File(label="Upload PDFs", file_count="multiple")
with gr.Row():
with gr.Column(scale=0.85):
txt = gr.Textbox(show_label=False, placeholder="Enter your question here...").style(container=False)
with gr.Column(scale=0.15, min_width=0):
send_btn = gr.Button("Send")
def respond(messages, files, txt):
messages = chat(messages, files)
return messages, None, ""
send_btn.click(respond, [chatbot, file_input, txt], [chatbot, file_input, txt])
txt.submit(respond, [chatbot, file_input, txt], [chatbot, file_input, txt])
demo.launch()
|