Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -13,11 +13,7 @@ logging.basicConfig(level=logging.INFO)
|
|
13 |
logger = logging.getLogger(__name__)
|
14 |
|
15 |
# Page configuration
|
16 |
-
st.set_page_config(
|
17 |
-
page_title="DeepSeek Chatbot - ruslanmv.com",
|
18 |
-
page_icon="🤖",
|
19 |
-
layout="centered"
|
20 |
-
)
|
21 |
|
22 |
# Initialize session state for chat history
|
23 |
if "messages" not in st.session_state:
|
@@ -29,31 +25,13 @@ with st.sidebar:
|
|
29 |
st.markdown("[Get HuggingFace Token](https://huggingface.co/settings/tokens)")
|
30 |
|
31 |
# Dropdown to select model
|
32 |
-
model_options = [
|
33 |
-
"deepseek-ai/DeepSeek-R1-Distill-Qwen-32B",
|
34 |
-
]
|
35 |
selected_model = st.selectbox("Select Model", model_options, index=0)
|
36 |
|
37 |
-
system_message = st.text_area(
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
)
|
42 |
-
|
43 |
-
max_tokens = st.slider(
|
44 |
-
"Max Tokens",
|
45 |
-
10, 4000, 100
|
46 |
-
)
|
47 |
-
|
48 |
-
temperature = st.slider(
|
49 |
-
"Temperature",
|
50 |
-
0.1, 4.0, 0.3
|
51 |
-
)
|
52 |
-
|
53 |
-
top_p = st.slider(
|
54 |
-
"Top-p",
|
55 |
-
0.1, 1.0, 0.6
|
56 |
-
)
|
57 |
|
58 |
# Function to query the Hugging Face API
|
59 |
def query(payload, api_url):
|
@@ -79,11 +57,7 @@ def process_pdf(uploaded_file):
|
|
79 |
documents = loader.load()
|
80 |
|
81 |
# Split the documents into chunks
|
82 |
-
text_splitter = RecursiveCharacterTextSplitter(
|
83 |
-
chunk_size=1000,
|
84 |
-
chunk_overlap=200,
|
85 |
-
add_start_index=True
|
86 |
-
)
|
87 |
return text_splitter.split_documents(documents)
|
88 |
|
89 |
# Function to generate response using LangChain
|
@@ -120,8 +94,13 @@ if uploaded_file:
|
|
120 |
documents = process_pdf(uploaded_file)
|
121 |
context = "\n\n".join([doc.page_content for doc in documents])
|
122 |
|
123 |
-
#
|
124 |
-
|
|
|
|
|
|
|
|
|
|
|
125 |
st.session_state.messages.append({"role": "user", "content": prompt})
|
126 |
|
127 |
with st.chat_message("user"):
|
@@ -129,60 +108,14 @@ if uploaded_file:
|
|
129 |
|
130 |
try:
|
131 |
with st.spinner("Generating response..."):
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
"top_p": top_p,
|
140 |
-
"return_full_text": False
|
141 |
-
}
|
142 |
-
}
|
143 |
-
|
144 |
-
# Dynamically construct the API URL based on the selected model
|
145 |
-
api_url = f"https://api-inference.huggingface.co/models/{selected_model}"
|
146 |
-
logger.info(f"Selected model: {selected_model}, API URL: {api_url}")
|
147 |
-
|
148 |
-
# Query the Hugging Face API using the selected model
|
149 |
-
output = query(payload, api_url)
|
150 |
-
|
151 |
-
# Handle API response
|
152 |
-
if output is not None and isinstance(output, list) and len(output) > 0:
|
153 |
-
if 'generated_text' in output[0]:
|
154 |
-
assistant_response = output[0]['generated_text'].strip()
|
155 |
-
|
156 |
-
# Check for and remove duplicate responses
|
157 |
-
responses = assistant_response.split("\n</think>\n")
|
158 |
-
unique_response = responses[0].strip()
|
159 |
-
|
160 |
-
logger.info(f"Generated response: {unique_response}")
|
161 |
-
|
162 |
-
# Append response to chat only once
|
163 |
-
with st.chat_message("assistant"):
|
164 |
-
st.markdown(unique_response)
|
165 |
-
|
166 |
-
st.session_state.messages.append({"role": "assistant", "content": unique_response})
|
167 |
-
else:
|
168 |
-
logger.error(f"Unexpected API response structure: {output}")
|
169 |
-
st.error("Error: Unexpected response from the model. Please try again.")
|
170 |
-
else:
|
171 |
-
logger.error(f"Empty or invalid API response: {output}")
|
172 |
-
st.error("Error: Unable to generate a response. Please check the model and try again.")
|
173 |
|
174 |
except Exception as e:
|
175 |
logger.error(f"Application Error: {str(e)}", exc_info=True)
|
176 |
st.error(f"Application Error: {str(e)}")
|
177 |
-
|
178 |
-
# Allow user to ask a question based on extracted PDF content
|
179 |
-
if uploaded_file and documents: # Ensure documents exist before proceeding
|
180 |
-
if prompt := st.chat_input("Ask a question about the PDF content"):
|
181 |
-
context = "\n\n".join([doc.page_content for doc in documents]) # Get context from documents
|
182 |
-
answer = generate_response_with_langchain(prompt, context)
|
183 |
-
|
184 |
-
# Show the answer from LangChain model
|
185 |
-
with st.chat_message("assistant"):
|
186 |
-
st.markdown(answer)
|
187 |
-
|
188 |
-
st.session_state.messages.append({"role": "assistant", "content": answer})
|
|
|
13 |
logger = logging.getLogger(__name__)
|
14 |
|
15 |
# Page configuration
|
16 |
+
st.set_page_config(page_title="DeepSeek Chatbot - ruslanmv.com", page_icon="🤖", layout="centered")
|
|
|
|
|
|
|
|
|
17 |
|
18 |
# Initialize session state for chat history
|
19 |
if "messages" not in st.session_state:
|
|
|
25 |
st.markdown("[Get HuggingFace Token](https://huggingface.co/settings/tokens)")
|
26 |
|
27 |
# Dropdown to select model
|
28 |
+
model_options = ["deepseek-ai/DeepSeek-R1-Distill-Qwen-32B"]
|
|
|
|
|
29 |
selected_model = st.selectbox("Select Model", model_options, index=0)
|
30 |
|
31 |
+
system_message = st.text_area("System Message", value="You are a friendly chatbot. Provide clear, accurate, and brief answers.", height=100)
|
32 |
+
max_tokens = st.slider("Max Tokens", 10, 4000, 100)
|
33 |
+
temperature = st.slider("Temperature", 0.1, 4.0, 0.3)
|
34 |
+
top_p = st.slider("Top-p", 0.1, 1.0, 0.6)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
|
36 |
# Function to query the Hugging Face API
|
37 |
def query(payload, api_url):
|
|
|
57 |
documents = loader.load()
|
58 |
|
59 |
# Split the documents into chunks
|
60 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200, add_start_index=True)
|
|
|
|
|
|
|
|
|
61 |
return text_splitter.split_documents(documents)
|
62 |
|
63 |
# Function to generate response using LangChain
|
|
|
94 |
documents = process_pdf(uploaded_file)
|
95 |
context = "\n\n".join([doc.page_content for doc in documents])
|
96 |
|
97 |
+
# Combine system message and user input into a single prompt
|
98 |
+
prompt_input = "Ask a question about the PDF content"
|
99 |
+
|
100 |
+
# Show the PDF-based question input if the PDF is uploaded
|
101 |
+
prompt = st.chat_input(prompt_input) if documents else None
|
102 |
+
|
103 |
+
if prompt:
|
104 |
st.session_state.messages.append({"role": "user", "content": prompt})
|
105 |
|
106 |
with st.chat_message("user"):
|
|
|
108 |
|
109 |
try:
|
110 |
with st.spinner("Generating response..."):
|
111 |
+
answer = generate_response_with_langchain(prompt, context)
|
112 |
+
|
113 |
+
# Show the answer from LangChain model
|
114 |
+
with st.chat_message("assistant"):
|
115 |
+
st.markdown(answer)
|
116 |
+
|
117 |
+
st.session_state.messages.append({"role": "assistant", "content": answer})
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
118 |
|
119 |
except Exception as e:
|
120 |
logger.error(f"Application Error: {str(e)}", exc_info=True)
|
121 |
st.error(f"Application Error: {str(e)}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|