File size: 6,291 Bytes
b1828a3
 
 
 
44f5cb7
b1828a3
 
 
 
 
 
44f5cb7
b1828a3
 
 
 
 
 
 
 
 
 
 
 
44f5cb7
b1828a3
44f5cb7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b1828a3
 
1aa521f
44f5cb7
b1828a3
1aa521f
b1828a3
44f5cb7
b1828a3
 
 
44f5cb7
 
 
b1828a3
 
44f5cb7
 
b1828a3
 
 
 
 
 
 
 
 
 
 
 
44f5cb7
b1828a3
 
 
44f5cb7
 
 
 
b1828a3
 
44f5cb7
b1828a3
 
44f5cb7
 
 
 
 
 
 
 
 
 
 
b1828a3
44f5cb7
 
b1828a3
44f5cb7
b1828a3
44f5cb7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b1828a3
 
 
44f5cb7
 
 
 
 
b1828a3
 
 
 
 
 
 
 
 
 
1bb7c1d
b1828a3
 
 
 
 
 
 
 
 
 
 
 
f539e6d
b1828a3
44f5cb7
 
 
 
 
b1828a3
 
 
 
 
 
 
 
 
1bb7c1d
 
f539e6d
b1828a3
 
 
 
 
 
 
 
1bb7c1d
b1828a3
1bb7c1d
f539e6d
b1828a3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
import gradio as gr
import librosa
import numpy as np
import moviepy.editor as mpy
import torch

from PIL import Image, ImageDraw, ImageFont
from transformers import pipeline


max_duration = 60  # seconds
fps = 25
video_width = 640
video_height = 480
margin_left = 20
margin_right = 20
margin_top = 20
line_height = 44

background_image = Image.open("background.png")
font = ImageFont.truetype("Lato-Regular.ttf", 40)
text_color = (255, 200, 200)
highlight_color = (255, 255, 255)

# checkpoint = "openai/whisper-tiny"
# checkpoint = "openai/whisper-base"
checkpoint = "openai/whisper-small"

if torch.cuda.is_available() and torch.cuda.device_count() > 0:
    from transformers import (
        AutomaticSpeechRecognitionPipeline,
        WhisperForConditionalGeneration,
        WhisperProcessor,
    )
    model = WhisperForConditionalGeneration.from_pretrained(checkpoint).to("cuda").half()
    processor = WhisperProcessor.from_pretrained(checkpoint)
    pipe = AutomaticSpeechRecognitionPipeline(
        model=model,
        tokenizer=processor.tokenizer,
        feature_extractor=processor.feature_extractor,
        batch_size=8,
        torch_dtype=torch.float16,
        device="cuda:0"
    )
else:
    pipe = pipeline(model=checkpoint)

# TODO: no longer need to set these manually once the models have been updated on the Hub
# whisper-tiny
# pipe.model.generation_config.alignment_heads = [[2, 2], [3, 0], [3, 2], [3, 3], [3, 4], [3, 5]]
# whisper-base
# pipe.model.generation_config.alignment_heads = [[3, 1], [4, 2], [4, 3], [4, 7], [5, 1], [5, 2], [5, 4], [5, 6]]
# whisper-small
pipe.model.generation_config.alignment_heads = [[5, 3], [5, 9], [8, 0], [8, 4], [8, 7], [8, 8], [9, 0], [9, 7], [9, 9], [10, 5]]

chunks = []

start_chunk = 0
last_draws = []
last_image = None


def make_frame(t):
    global chunks, start_chunk, last_draws, last_image

    # TODO in the Henry V example, the word "desires" has an ending timestamp
    # that's too far into the future, and so the word stays highlighted.
    # Could fix this by finding the latest word that is active in the chunk
    # and only highlight that one.

    image = background_image.copy()
    draw = ImageDraw.Draw(image)

    # for debugging: draw frame time
    #draw.text((20, 20), str(t), fill=text_color, font=font)

    space_length = draw.textlength(" ", font)
    x = margin_left
    y = margin_top

    # Create a list of drawing commands
    draws = []
    for i in range(start_chunk, len(chunks)):
        chunk = chunks[i]
        chunk_start = chunk["timestamp"][0]
        chunk_end = chunk["timestamp"][1]
        if chunk_start > t: break
        if chunk_end is None: chunk_end = max_duration

        word = chunk["text"]
        word_length = draw.textlength(word + " ", font) - space_length

        if x + word_length >= video_width - margin_right:
            x = margin_left
            y += line_height

            # restart page when end is reached
            if y >= margin_top + line_height * 7:
                start_chunk = i
                break

        highlight = (chunk_start <= t < chunk_end)
        draws.append([x, y, word, word_length, highlight])

        x += word_length + space_length

    # If the drawing commands didn't change, then reuse the last image,
    # otherwise draw a new image
    if draws != last_draws:
        for x, y, word, word_length, highlight in draws:
            if highlight:
                color = highlight_color
                draw.rectangle([x, y + line_height, x + word_length, y + line_height + 4], fill=color)
            else:
                color = text_color

            draw.text((x, y), word, fill=color, font=font)

        last_image = np.array(image)
        last_draws = draws

    return last_image


def predict(audio_path):
    global chunks, start_chunk, last_draws, last_image

    start_chunk = 0
    last_draws = []
    last_image = None

    audio_data, sr = librosa.load(audio_path, mono=True)
    duration = librosa.get_duration(y=audio_data, sr=sr)
    duration = min(max_duration, duration)
    audio_data = audio_data[:int(duration * sr)]

    # Run Whisper to get word-level timestamps.
    audio_inputs = librosa.resample(audio_data, orig_sr=sr, target_sr=pipe.feature_extractor.sampling_rate)
    output = pipe(audio_inputs, chunk_length_s=30, stride_length_s=[4, 2], return_timestamps="word")
    chunks = output["chunks"]
    #print(chunks)

    # Create the video.
    clip = mpy.VideoClip(make_frame, duration=duration)
    audio_clip = mpy.AudioFileClip(audio_path).set_duration(duration)
    clip = clip.set_audio(audio_clip)
    clip.write_videofile("my_video.mp4", fps=fps, codec="libx264", audio_codec="aac")
    return "my_video.mp4"


title = "Word-level timestamps with Whisper"

description = """
This demo shows Whisper <b>word-level timestamps</b> in action using Hugging Face Transformers. It creates a video showing subtitled audio with the current word highlighted. It can even do music lyrics!

This demo uses the <b>openai/whisper-small</b> checkpoint.

Since it's only a demo, the output is limited to the first 60 seconds of audio.
To use this on longer audio, <a href="https://huggingface.co/spaces/Matthijs/whisper_word_timestamps/settings?duplicate=true">duplicate the space</a>
and in <b>app.py</b> change the value of `max_duration`.
"""

article = """
<div style='margin:20px auto;'>

<p>Credits:<p>

<ul>
<li>Shakespeare's "Henry V" speech from <a href="https://freesound.org/people/acclivity/sounds/24096/">acclivity</a> (CC BY-NC 4.0 license)
<li>"Here's to the Crazy Ones" speech by Steve Jobs</li>
<li>"Stupid People" comedy routine by Bill Engvall</li>
<li>"BeOS, It's The OS" song by The Cotton Squares</li>
<li>Lato font by Łukasz Dziedzic (licensed under Open Font License)</li>
<li>Whisper model by OpenAI</li>
</ul>

</div>
"""

examples = [
    "examples/steve_jobs_crazy_ones.mp3",
    "examples/henry5.wav",
    "examples/stupid_people.mp3",
    "examples/beos_song.mp3",
]

gr.Interface(
    fn=predict,
    inputs=[
        gr.Audio(label="Upload Audio", source="upload", type="filepath"),
    ],
    outputs=[
        gr.Video(label="Output Video"),
    ],
    title=title,
    description=description,
    article=article,
    examples=examples,
).launch()