import streamlit as st # Use a pipeline as a high-level helper from transformers import pipeline toxic_model = pipeline("text-classification", model="Matt09Miao/GP5_tweet_toxic") def text2audio(text): pipe = pipeline("text-to-audio", model="Matthijs/mms-tts-eng") audio_data = pipe(text) return audio_data st.set_page_config(page_title="Tweet Toxicity Analysis") st.header("Please input a Tweet for Toxicity Analysis :performing_arts:") input = st.text_area("Enter a Tweer for analysis") result = toxic_model(input) # Display the result st.write("Tweet:", input) st.write("label:", result[0]['label']) st.write("score:", result[0]['score']) text2audio("Tweet:", input) st.audio(audio_data['audio'], format="audio/wav", start_time=0, sample_rate = audio_data['sampling_rate']) text2audio("label:", result[0]['label']) st.audio(audio_data['audio'], format="audio/wav", start_time=0, sample_rate = audio_data['sampling_rate']) text2audio("score:", result[0]['score']) st.audio(audio_data['audio'], format="audio/wav", start_time=0, sample_rate = audio_data['sampling_rate'])