Matt09Miao's picture
Update app.py
010cbc6 verified
raw
history blame
576 Bytes
import streamlit as st
# Use a pipeline as a high-level helper
from transformers import pipeline
toxic_model = pipeline("text-classification", model="Matt09Miao/GP5_tweet_toxic")
st.set_page_config(page_title="Tweet Toxicity Analysis")
st.header("Please input your Tweet for Toxicity Analysis :performing_arts:")
input = st.text_area("Enter a Tweer for analysis")
result = toxic_model(input)
# Display the result
st.write("Tweet:", input)
result_label = ''
result_label= result['label']
st.write("label:", result_label)
st.write("score:", result['socre'])