File size: 489 Bytes
ffd4428
335f18b
 
ffd4428
 
335f18b
a5643e3
d2b35f2
fa0b08d
35f5bf3
ebd8530
fa0b08d
35f5bf3
 
a716b14
6fa920b
 
2ac75f2
787f0bf
fa0b08d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
import streamlit as st

# Use a pipeline as a high-level helper
from transformers import pipeline

toxic_model = pipeline("text-classification", model="Matt09Miao/GP5_tweet_toxic")  
    


st.set_page_config(page_title="Tweet Toxicity Analysis")

st.header("Please input your Tweet for Toxicity Analysis :performing_arts:")
input = st.text_area("Enter a Tweer for analysis")
result = toxic_model(input)

  # Display the result
st.write("Tweet:", input)
st.write("result", result[0])