Update model.py
Browse files
model.py
CHANGED
@@ -1,50 +1,39 @@
|
|
1 |
-
import
|
|
|
|
|
|
|
2 |
from PIL import Image
|
3 |
-
from
|
4 |
-
import os
|
5 |
|
6 |
-
|
7 |
-
|
|
|
|
|
|
|
|
|
|
|
8 |
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
# Rotate and render views for GIF
|
23 |
-
for angle in range(0, 360, 30): # Capture images every 30 degrees
|
24 |
-
scene = mesh.scene()
|
25 |
-
scene.set_camera(angles=(angle, angle))
|
26 |
-
data = scene.save_image(resolution=(256, 256))
|
27 |
-
images.append(Image.open(BytesIO(data)))
|
28 |
-
|
29 |
-
# Convert to GIF
|
30 |
-
gif_path = convert_to_gif(images, gif_path=output_gif_path)
|
31 |
-
|
32 |
-
# Display GIF
|
33 |
-
st.image(gif_path, caption="Generated 3D Model GIF")
|
34 |
-
|
35 |
-
# Provide download options
|
36 |
-
with open(gif_path, "rb") as file:
|
37 |
-
st.download_button(
|
38 |
-
label="Download GIF",
|
39 |
-
data=file,
|
40 |
-
file_name="generated_3d_model.gif",
|
41 |
-
mime="image/gif"
|
42 |
-
)
|
43 |
-
|
44 |
-
with open(obj_path, "rb") as file:
|
45 |
-
st.download_button(
|
46 |
-
label="Download 3D Model (.obj)",
|
47 |
-
data=file,
|
48 |
-
file_name="generated_3d_model.obj",
|
49 |
-
mime="application/octet-stream"
|
50 |
-
)
|
|
|
1 |
+
import torch
|
2 |
+
from diffusers import DiffusionPipeline
|
3 |
+
import trimesh
|
4 |
+
import numpy as np
|
5 |
from PIL import Image
|
6 |
+
from io import BytesIO
|
|
|
7 |
|
8 |
+
def load_pipeline():
|
9 |
+
"""
|
10 |
+
Load the stable-zero123 model pipeline from Hugging Face.
|
11 |
+
"""
|
12 |
+
ckpt_id = "stabilityai/stable-zero123"
|
13 |
+
pipe = DiffusionPipeline.from_pretrained(ckpt_id, torch_dtype=torch.float32).to("cpu")
|
14 |
+
return pipe
|
15 |
|
16 |
+
def generate_3d_model(pipe, prompt, output_path="output.obj", guidance_scale=7.5, num_inference_steps=32):
|
17 |
+
"""
|
18 |
+
Generate a 3D model from the prompt and save it in a Blender-compatible format (.obj).
|
19 |
+
"""
|
20 |
+
# Generate the model output
|
21 |
+
outputs = pipe(prompt=prompt, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps)
|
22 |
+
|
23 |
+
# Extract mesh data if the output structure allows
|
24 |
+
vertices = outputs["vertices"][0].detach().cpu().numpy()
|
25 |
+
faces = outputs["faces"][0].detach().cpu().numpy()
|
26 |
+
|
27 |
+
# Create and save the mesh using trimesh
|
28 |
+
mesh = trimesh.Trimesh(vertices=vertices, faces=faces, process=True)
|
29 |
+
mesh.export(output_path)
|
30 |
+
return output_path
|
31 |
|
32 |
+
def convert_to_gif(images, gif_path="output.gif"):
|
33 |
+
"""
|
34 |
+
Convert a list of images into a GIF.
|
35 |
+
"""
|
36 |
+
images[0].save(
|
37 |
+
gif_path, save_all=True, append_images=images[1:], loop=0, duration=100
|
38 |
+
)
|
39 |
+
return gif_path
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|