import streamlit as st import openai import os # Securely fetch the OpenAI API key #try: openai.api_key = ('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') #except openai.APIError as e: # Log the error for debugging purposes #st.error("An error occurred while communicating with the OpenAI API.") # Optionally, log more detailed information for debugging #print("Error details:", e) # You might also want to implement additional logic here, like retrying the request, # sending a notification to an administrator, or providing a default response. KNOWN_MODELS = [ # General ML models "Neural Networks", "Decision Trees", "Support Vector Machines", "Random Forests", "Linear Regression", "Reinforcement Learning", "Logistic Regression", "k-Nearest Neighbors", "Naive Bayes", "Gradient Boosting Machines", "Regularization Techniques", "Ensemble Methods", "Time Series Analysis", # Deep Learning models "Deep Learning", "Convolutional Neural Networks", "Recurrent Neural Networks", "Transformer Models", "Generative Adversarial Networks", "Autoencoders", "Bidirectional LSTM", "Residual Networks (ResNets)", "Variational Autoencoders", # Computer Vision models and techniques "Object Detection (e.g., YOLO, SSD)", "Semantic Segmentation", "Image Classification", "Face Recognition", "Optical Character Recognition (OCR)", "Pose Estimation", "Style Transfer", "Image-to-Image Translation", "Image Generation", "Capsule Networks", # NLP models and techniques "BERT", "GPT", "ELMo", "T5", "Word2Vec", "Doc2Vec", "Topic Modeling", "Sentiment Analysis", "Text Classification", "Machine Translation", "Speech Recognition", "Sequence-to-Sequence Models", "Attention Mechanisms", "Named Entity Recognition", "Text Summarization" ] def recommend_ai_model_via_gpt(description, dataset_description): combined_description = f"{description} Dataset: {dataset_description}" messages = [{"role": "user", "content": combined_description}] response = openai.ChatCompletion.create(model="gpt-4", messages=messages) return response['choices'][0]['message']['content'].strip() def explain_recommendation(model_name): messages = [{"role": "user", "content": f"Why would {model_name} be a suitable choice for the application?"}] response = openai.ChatCompletion.create(model="gpt-4", messages=messages) return response['choices'][0]['message']['content'].strip() # Streamlit UI if 'show_dataset_description' not in st.session_state: st.session_state.show_dataset_description = False st.image("./A8title.png") st.title('Discover the best model for your GenAI App') # Inserting blank space st.write("") st.write("") st.write("") st.markdown("

Outline Your Application's Functionality:

", unsafe_allow_html=True) description = st.text_area("", key="app_description") if description: if st.button("Next", key="next_to_dataset"): st.session_state.show_dataset_description = True if 'show_dataset_description' in st.session_state and st.session_state.show_dataset_description: dataset_description = st.text_area("Detail your model's training dataset:") if dataset_description: if st.button("Recommend AI Model", key="recommend_model_button"): recommended_model = recommend_ai_model_via_gpt(description, dataset_description) st.subheader(f"Recommended: {recommended_model}") explanation = explain_recommendation(recommended_model) st.write("Reason:", explanation) rating = st.slider("Rate the explanation from 1 (worst) to 5 (best):", 1, 5) feedback = st.text_input("Any additional feedback?") if st.button("Submit Feedback", key="submit_feedback_key"): st.session_state.feedback_submitted = True if st.session_state.feedback_submitted: st.success("Thank you for your feedback!") else: st.warning("Please provide a description of your application.")