Spaces:
Build error
Build error
Commit
Β·
7bfec74
1
Parent(s):
f5286d9
new agent
Browse files- agent/__init__.py +2 -0
- agent/gaia_agent.py +29 -0
- app.py +126 -63
- app1.py +0 -181
- requirements.txt +14 -2
- tools/__init__.py +0 -6
- tools/audio_transcriber.py +25 -0
- tools/file_parser.py +44 -0
- tools/image_chess_solver.py +50 -0
- tools/tool_math.py +0 -26
- tools/wikipedia_tool.py +22 -0
- tools/youtube_tool.py +47 -0
agent/__init__.py
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
# tools/__init__.py
|
2 |
+
|
agent/gaia_agent.py
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from langchain.agents import initialize_agent, AgentType
|
3 |
+
from langchain.tools import Tool
|
4 |
+
from langchain.llms import OpenAI
|
5 |
+
from tools.wikipedia_tool import wiki_search
|
6 |
+
from tools.audio_transcriber import transcribe_audio
|
7 |
+
from tools.file_parser import parse_file_and_summarize
|
8 |
+
from tools.image_chess_solver import solve_chess_image
|
9 |
+
from tools.youtube_tool import extract_video_id, get_youtube_transcript
|
10 |
+
|
11 |
+
|
12 |
+
def create_langchain_agent():
|
13 |
+
tools = [
|
14 |
+
Tool(name="Wikipedia Search", func=wiki_search, description="Search Wikipedia for facts."),
|
15 |
+
Tool(name="Transcribe Audio", func=transcribe_audio, description="Transcribe MP3 recordings."),
|
16 |
+
Tool(name="Image Chess Solver", func=solve_chess_image, description="Solve chess images."),
|
17 |
+
Tool(name="File Parser", func=parse_file_and_summarize, description="Summarize files."),
|
18 |
+
Tool(name="Youtube Tool Extract", func=extract_video_id, description="Extract videos ids-"),
|
19 |
+
Tool(name="Youtube Tool Transscript", func=get_youtube_transcript, description="Transscript youtube videos-"),
|
20 |
+
]
|
21 |
+
|
22 |
+
llm = OpenAI(temperature=0.3, model_name="gpt-4", openai_api_key=os.getenv("Openai")) # Must be set in your env) # Or use HuggingFaceHub/llama3
|
23 |
+
agent = initialize_agent(
|
24 |
+
tools=tools,
|
25 |
+
llm=llm,
|
26 |
+
agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION,
|
27 |
+
verbose=True
|
28 |
+
)
|
29 |
+
return agent
|
app.py
CHANGED
@@ -3,48 +3,87 @@ import gradio as gr
|
|
3 |
import requests
|
4 |
import inspect
|
5 |
import pandas as pd
|
6 |
-
import random
|
7 |
-
from huggingface_hub import notebook_login
|
8 |
-
from transformers import Tool
|
9 |
-
from tools.tool_math import SolveEquationTool, ExplainSolutionTool
|
10 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
# --- Constants ---
|
12 |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
13 |
|
14 |
-
# ---
|
15 |
-
|
|
|
16 |
def __init__(self):
|
17 |
-
|
18 |
-
|
19 |
-
ExplainSolutionTool(),
|
20 |
-
]
|
21 |
-
print("MathSolverAgent initialized with tools.")
|
22 |
|
23 |
def __call__(self, question: str) -> str:
|
24 |
-
|
25 |
-
for tool in self.tools:
|
26 |
-
if tool.name in question.lower():
|
27 |
-
return tool(question)
|
28 |
-
|
29 |
try:
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
solution = self.tools[0](question)
|
34 |
-
if solution.startswith("Error"):
|
35 |
-
return solution
|
36 |
-
|
37 |
-
explanation = self.tools[1](question)
|
38 |
-
return f"{solution}\nExplanation:\n{explanation}"
|
39 |
except Exception as e:
|
40 |
-
return "
|
41 |
-
|
42 |
|
43 |
-
def run_and_submit_all(profile: gr.OAuthProfile | None):
|
44 |
-
|
|
|
|
|
|
|
|
|
|
|
45 |
|
46 |
if profile:
|
47 |
-
username
|
48 |
print(f"User logged in: {username}")
|
49 |
else:
|
50 |
print("User not logged in.")
|
@@ -54,28 +93,38 @@ def run_and_submit_all(profile: gr.OAuthProfile | None):
|
|
54 |
questions_url = f"{api_url}/questions"
|
55 |
submit_url = f"{api_url}/submit"
|
56 |
|
|
|
57 |
try:
|
58 |
-
agent =
|
59 |
except Exception as e:
|
60 |
print(f"Error instantiating agent: {e}")
|
61 |
return f"Error initializing agent: {e}", None
|
62 |
-
|
63 |
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
|
64 |
print(agent_code)
|
65 |
|
|
|
66 |
print(f"Fetching questions from: {questions_url}")
|
67 |
try:
|
68 |
response = requests.get(questions_url, timeout=15)
|
69 |
response.raise_for_status()
|
70 |
questions_data = response.json()
|
71 |
if not questions_data:
|
72 |
-
|
73 |
-
|
74 |
print(f"Fetched {len(questions_data)} questions.")
|
75 |
except requests.exceptions.RequestException as e:
|
76 |
print(f"Error fetching questions: {e}")
|
77 |
return f"Error fetching questions: {e}", None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
78 |
|
|
|
79 |
results_log = []
|
80 |
answers_payload = []
|
81 |
print(f"Running agent on {len(questions_data)} questions...")
|
@@ -90,17 +139,19 @@ def run_and_submit_all(profile: gr.OAuthProfile | None):
|
|
90 |
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
|
91 |
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
|
92 |
except Exception as e:
|
93 |
-
|
94 |
-
|
95 |
|
96 |
if not answers_payload:
|
97 |
print("Agent did not produce any answers to submit.")
|
98 |
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
|
99 |
|
|
|
100 |
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
|
101 |
status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
|
102 |
print(status_update)
|
103 |
|
|
|
104 |
print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
|
105 |
try:
|
106 |
response = requests.post(submit_url, json=submission_data, timeout=60)
|
@@ -116,46 +167,56 @@ def run_and_submit_all(profile: gr.OAuthProfile | None):
|
|
116 |
print("Submission successful.")
|
117 |
results_df = pd.DataFrame(results_log)
|
118 |
return final_status, results_df
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
119 |
except requests.exceptions.RequestException as e:
|
120 |
-
status_message = f"Submission Failed: {e}"
|
|
|
|
|
|
|
|
|
|
|
121 |
print(status_message)
|
122 |
results_df = pd.DataFrame(results_log)
|
123 |
return status_message, results_df
|
124 |
|
125 |
-
|
|
|
126 |
with gr.Blocks() as demo:
|
127 |
-
gr.Markdown("#
|
128 |
gr.Markdown(
|
129 |
"""
|
130 |
**Instructions:**
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
|
|
|
|
|
|
135 |
"""
|
136 |
)
|
137 |
|
138 |
gr.LoginButton()
|
139 |
-
|
140 |
-
# manual input
|
141 |
-
manual_input = gr.Textbox(label="Try the Agent Manually", placeholder="e.g., Solve for x: 2*x + 3 = 7")
|
142 |
-
manual_output = gr.Textbox(label="Agent Response", lines=4, interactive=False)
|
143 |
-
manual_test_button = gr.Button("Run Agent Locally")
|
144 |
-
|
145 |
-
def run_manual_input(user_input):
|
146 |
-
agent = MathSolverAgent()
|
147 |
-
user_input = user_input.strip()
|
148 |
-
print(f"Manual input received: {user_input}")
|
149 |
-
return agent(user_input)
|
150 |
-
#agent = MathSolverAgent()
|
151 |
-
#return agent(user_input)
|
152 |
-
|
153 |
-
manual_test_button.click(fn=run_manual_input, inputs=manual_input, outputs=manual_output)
|
154 |
-
|
155 |
|
156 |
run_button = gr.Button("Run Evaluation & Submit All Answers")
|
157 |
|
158 |
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
|
|
|
159 |
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
|
160 |
|
161 |
run_button.click(
|
@@ -165,8 +226,9 @@ with gr.Blocks() as demo:
|
|
165 |
|
166 |
if __name__ == "__main__":
|
167 |
print("\n" + "-"*30 + " App Starting " + "-"*30)
|
|
|
168 |
space_host_startup = os.getenv("SPACE_HOST")
|
169 |
-
space_id_startup = os.getenv("SPACE_ID")
|
170 |
|
171 |
if space_host_startup:
|
172 |
print(f"β
SPACE_HOST found: {space_host_startup}")
|
@@ -174,7 +236,7 @@ if __name__ == "__main__":
|
|
174 |
else:
|
175 |
print("βΉοΈ SPACE_HOST environment variable not found (running locally?).")
|
176 |
|
177 |
-
if space_id_startup:
|
178 |
print(f"β
SPACE_ID found: {space_id_startup}")
|
179 |
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
|
180 |
print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
|
@@ -182,5 +244,6 @@ if __name__ == "__main__":
|
|
182 |
print("βΉοΈ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")
|
183 |
|
184 |
print("-"*(60 + len(" App Starting ")) + "\n")
|
185 |
-
|
186 |
-
|
|
|
|
3 |
import requests
|
4 |
import inspect
|
5 |
import pandas as pd
|
|
|
|
|
|
|
|
|
6 |
|
7 |
+
from langchain.agents import initialize_agent, AgentType
|
8 |
+
from langchain.llms import OpenAI
|
9 |
+
from langchain.tools import Tool
|
10 |
+
from agent.gaia_agent import create_langchain_agent
|
11 |
+
|
12 |
+
from tools.wikipedia_tool import wiki_search
|
13 |
+
from tools.youtube_tool import get_youtube_transcript
|
14 |
+
from tools.audio_transcriber import transcribe_audio
|
15 |
+
from tools.image_chess_solver import solve_chess_image
|
16 |
+
from tools.file_parser import parse_file_and_summarize
|
17 |
+
|
18 |
+
def create_langchain_agent():
|
19 |
+
tools = [
|
20 |
+
Tool(
|
21 |
+
name="Wikipedia Search",
|
22 |
+
func=wiki_search,
|
23 |
+
description="Use this tool to look up verified facts on Wikipedia. Input: search term."
|
24 |
+
),
|
25 |
+
Tool(
|
26 |
+
name="YouTube Transcript",
|
27 |
+
func=get_youtube_transcript,
|
28 |
+
description="Extract speech from YouTube videos. Input: video URL."
|
29 |
+
),
|
30 |
+
Tool(
|
31 |
+
name="Transcribe Audio",
|
32 |
+
func=transcribe_audio,
|
33 |
+
description="Transcribe audio from a local MP3/WAV file. Input: path to audio file."
|
34 |
+
),
|
35 |
+
Tool(
|
36 |
+
name="Image Chess Solver",
|
37 |
+
func=solve_chess_image,
|
38 |
+
description="Solve a chess puzzle from an image. Input: path to image file."
|
39 |
+
),
|
40 |
+
Tool(
|
41 |
+
name="File Parser",
|
42 |
+
func=parse_file_and_summarize,
|
43 |
+
description="Answer data questions from a spreadsheet. Input: path to CSV/XLSX file."
|
44 |
+
),
|
45 |
+
]
|
46 |
+
|
47 |
+
llm = OpenAI(temperature=0) # Or replace with Llama3 via HuggingFaceHub
|
48 |
+
agent = initialize_agent(
|
49 |
+
tools=tools,
|
50 |
+
llm=llm,
|
51 |
+
agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION,
|
52 |
+
verbose=True,
|
53 |
+
handle_parsing_errors=True
|
54 |
+
)
|
55 |
+
return agent
|
56 |
+
|
57 |
+
|
58 |
+
# (Keep Constants as is)
|
59 |
# --- Constants ---
|
60 |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
61 |
|
62 |
+
# --- Basic Agent Definition ---
|
63 |
+
# ----- THIS IS WERE YOU CAN BUILD WHAT YOU WANT ------
|
64 |
+
class BasicAgent:
|
65 |
def __init__(self):
|
66 |
+
print("Initializing LangChain Agent...")
|
67 |
+
self.agent = create_langchain_agent()
|
|
|
|
|
|
|
68 |
|
69 |
def __call__(self, question: str) -> str:
|
70 |
+
|
|
|
|
|
|
|
|
|
71 |
try:
|
72 |
+
result = self.agent.run(question)
|
73 |
+
return result
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
74 |
except Exception as e:
|
75 |
+
return f"Agent error: {e}"
|
|
|
76 |
|
77 |
+
def run_and_submit_all( profile: gr.OAuthProfile | None):
|
78 |
+
"""
|
79 |
+
Fetches all questions, runs the BasicAgent on them, submits all answers,
|
80 |
+
and displays the results.
|
81 |
+
"""
|
82 |
+
# --- Determine HF Space Runtime URL and Repo URL ---
|
83 |
+
space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code
|
84 |
|
85 |
if profile:
|
86 |
+
username= f"{profile.username}"
|
87 |
print(f"User logged in: {username}")
|
88 |
else:
|
89 |
print("User not logged in.")
|
|
|
93 |
questions_url = f"{api_url}/questions"
|
94 |
submit_url = f"{api_url}/submit"
|
95 |
|
96 |
+
# 1. Instantiate Agent ( modify this part to create your agent)
|
97 |
try:
|
98 |
+
agent = BasicAgent()
|
99 |
except Exception as e:
|
100 |
print(f"Error instantiating agent: {e}")
|
101 |
return f"Error initializing agent: {e}", None
|
102 |
+
# In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public)
|
103 |
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
|
104 |
print(agent_code)
|
105 |
|
106 |
+
# 2. Fetch Questions
|
107 |
print(f"Fetching questions from: {questions_url}")
|
108 |
try:
|
109 |
response = requests.get(questions_url, timeout=15)
|
110 |
response.raise_for_status()
|
111 |
questions_data = response.json()
|
112 |
if not questions_data:
|
113 |
+
print("Fetched questions list is empty.")
|
114 |
+
return "Fetched questions list is empty or invalid format.", None
|
115 |
print(f"Fetched {len(questions_data)} questions.")
|
116 |
except requests.exceptions.RequestException as e:
|
117 |
print(f"Error fetching questions: {e}")
|
118 |
return f"Error fetching questions: {e}", None
|
119 |
+
except requests.exceptions.JSONDecodeError as e:
|
120 |
+
print(f"Error decoding JSON response from questions endpoint: {e}")
|
121 |
+
print(f"Response text: {response.text[:500]}")
|
122 |
+
return f"Error decoding server response for questions: {e}", None
|
123 |
+
except Exception as e:
|
124 |
+
print(f"An unexpected error occurred fetching questions: {e}")
|
125 |
+
return f"An unexpected error occurred fetching questions: {e}", None
|
126 |
|
127 |
+
# 3. Run your Agent
|
128 |
results_log = []
|
129 |
answers_payload = []
|
130 |
print(f"Running agent on {len(questions_data)} questions...")
|
|
|
139 |
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
|
140 |
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
|
141 |
except Exception as e:
|
142 |
+
print(f"Error running agent on task {task_id}: {e}")
|
143 |
+
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
|
144 |
|
145 |
if not answers_payload:
|
146 |
print("Agent did not produce any answers to submit.")
|
147 |
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
|
148 |
|
149 |
+
# 4. Prepare Submission
|
150 |
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
|
151 |
status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
|
152 |
print(status_update)
|
153 |
|
154 |
+
# 5. Submit
|
155 |
print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
|
156 |
try:
|
157 |
response = requests.post(submit_url, json=submission_data, timeout=60)
|
|
|
167 |
print("Submission successful.")
|
168 |
results_df = pd.DataFrame(results_log)
|
169 |
return final_status, results_df
|
170 |
+
except requests.exceptions.HTTPError as e:
|
171 |
+
error_detail = f"Server responded with status {e.response.status_code}."
|
172 |
+
try:
|
173 |
+
error_json = e.response.json()
|
174 |
+
error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
|
175 |
+
except requests.exceptions.JSONDecodeError:
|
176 |
+
error_detail += f" Response: {e.response.text[:500]}"
|
177 |
+
status_message = f"Submission Failed: {error_detail}"
|
178 |
+
print(status_message)
|
179 |
+
results_df = pd.DataFrame(results_log)
|
180 |
+
return status_message, results_df
|
181 |
+
except requests.exceptions.Timeout:
|
182 |
+
status_message = "Submission Failed: The request timed out."
|
183 |
+
print(status_message)
|
184 |
+
results_df = pd.DataFrame(results_log)
|
185 |
+
return status_message, results_df
|
186 |
except requests.exceptions.RequestException as e:
|
187 |
+
status_message = f"Submission Failed: Network error - {e}"
|
188 |
+
print(status_message)
|
189 |
+
results_df = pd.DataFrame(results_log)
|
190 |
+
return status_message, results_df
|
191 |
+
except Exception as e:
|
192 |
+
status_message = f"An unexpected error occurred during submission: {e}"
|
193 |
print(status_message)
|
194 |
results_df = pd.DataFrame(results_log)
|
195 |
return status_message, results_df
|
196 |
|
197 |
+
|
198 |
+
# --- Build Gradio Interface using Blocks ---
|
199 |
with gr.Blocks() as demo:
|
200 |
+
gr.Markdown("# Basic Agent Evaluation Runner")
|
201 |
gr.Markdown(
|
202 |
"""
|
203 |
**Instructions:**
|
204 |
+
1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ...
|
205 |
+
2. Log in to your Hugging Face account using the button below. This uses your HF username for submission.
|
206 |
+
3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
|
207 |
+
---
|
208 |
+
**Disclaimers:**
|
209 |
+
Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions).
|
210 |
+
This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async.
|
211 |
"""
|
212 |
)
|
213 |
|
214 |
gr.LoginButton()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
215 |
|
216 |
run_button = gr.Button("Run Evaluation & Submit All Answers")
|
217 |
|
218 |
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
|
219 |
+
# Removed max_rows=10 from DataFrame constructor
|
220 |
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
|
221 |
|
222 |
run_button.click(
|
|
|
226 |
|
227 |
if __name__ == "__main__":
|
228 |
print("\n" + "-"*30 + " App Starting " + "-"*30)
|
229 |
+
# Check for SPACE_HOST and SPACE_ID at startup for information
|
230 |
space_host_startup = os.getenv("SPACE_HOST")
|
231 |
+
space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup
|
232 |
|
233 |
if space_host_startup:
|
234 |
print(f"β
SPACE_HOST found: {space_host_startup}")
|
|
|
236 |
else:
|
237 |
print("βΉοΈ SPACE_HOST environment variable not found (running locally?).")
|
238 |
|
239 |
+
if space_id_startup: # Print repo URLs if SPACE_ID is found
|
240 |
print(f"β
SPACE_ID found: {space_id_startup}")
|
241 |
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
|
242 |
print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
|
|
|
244 |
print("βΉοΈ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")
|
245 |
|
246 |
print("-"*(60 + len(" App Starting ")) + "\n")
|
247 |
+
|
248 |
+
print("Launching Gradio Interface for Basic Agent Evaluation...")
|
249 |
+
demo.launch(debug=True, share=False)
|
app1.py
DELETED
@@ -1,181 +0,0 @@
|
|
1 |
-
import os
|
2 |
-
import gradio as gr
|
3 |
-
import requests
|
4 |
-
import inspect
|
5 |
-
import pandas as pd
|
6 |
-
import random
|
7 |
-
from huggingface_hub import notebook_login
|
8 |
-
from transformers import Tool
|
9 |
-
from tools.tool_math import SolveEquationTool, ExplainSolutionTool
|
10 |
-
|
11 |
-
# --- Constants ---
|
12 |
-
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
13 |
-
|
14 |
-
# --- Math Solver Agent Definition ---
|
15 |
-
class MathSolverAgent:
|
16 |
-
def __init__(self):
|
17 |
-
from transformers import pipeline
|
18 |
-
self.tools = [
|
19 |
-
SolveEquationTool(),
|
20 |
-
ExplainSolutionTool(),
|
21 |
-
]
|
22 |
-
self.fallback = pipeline("text-generation", model="mistralai/Mistral-7B-Instruct-v0.1")
|
23 |
-
print("MathSolverAgent initialized with tools and fallback.")
|
24 |
-
print("MathSolverAgent initialized with tools.")
|
25 |
-
|
26 |
-
def __call__(self, question: str) -> str:
|
27 |
-
print(f"Agent received question (first 50 chars): {question[:50]}...")
|
28 |
-
try:
|
29 |
-
if random.random() < 0.5:
|
30 |
-
raise ValueError("Simulating incorrect or skipped answer.")
|
31 |
-
solution = self.tools[0](question)
|
32 |
-
explanation = self.tools[1](question)
|
33 |
-
return f"{solution}\nExplanation:\n{explanation}"
|
34 |
-
except Exception as e:
|
35 |
-
print(f"Math tools failed with error: {e}. Falling back to LLM.")
|
36 |
-
try:
|
37 |
-
fallback_result = self.fallback(question, max_new_tokens=100, do_sample=False)[0]['generated_text']
|
38 |
-
return fallback_result.strip()
|
39 |
-
except Exception as llm_error:
|
40 |
-
return f"Sorry, I couldn't solve that one (LLM error: {llm_error})."
|
41 |
-
|
42 |
-
def run_and_submit_all(profile: gr.OAuthProfile | None):
|
43 |
-
space_id = os.getenv("SPACE_ID")
|
44 |
-
|
45 |
-
if profile:
|
46 |
-
username = f"{profile.username}"
|
47 |
-
print(f"User logged in: {username}")
|
48 |
-
else:
|
49 |
-
print("User not logged in.")
|
50 |
-
return "Please Login to Hugging Face with the button.", None
|
51 |
-
|
52 |
-
api_url = DEFAULT_API_URL
|
53 |
-
questions_url = f"{api_url}/questions"
|
54 |
-
submit_url = f"{api_url}/submit"
|
55 |
-
|
56 |
-
try:
|
57 |
-
agent = MathSolverAgent()
|
58 |
-
except Exception as e:
|
59 |
-
print(f"Error instantiating agent: {e}")
|
60 |
-
return f"Error initializing agent: {e}", None
|
61 |
-
|
62 |
-
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
|
63 |
-
print(agent_code)
|
64 |
-
|
65 |
-
print(f"Fetching questions from: {questions_url}")
|
66 |
-
try:
|
67 |
-
response = requests.get(questions_url, timeout=15)
|
68 |
-
response.raise_for_status()
|
69 |
-
questions_data = response.json()
|
70 |
-
if not questions_data:
|
71 |
-
print("Fetched questions list is empty.")
|
72 |
-
return "Fetched questions list is empty or invalid format.", None
|
73 |
-
print(f"Fetched {len(questions_data)} questions.")
|
74 |
-
except requests.exceptions.RequestException as e:
|
75 |
-
print(f"Error fetching questions: {e}")
|
76 |
-
return f"Error fetching questions: {e}", None
|
77 |
-
|
78 |
-
results_log = []
|
79 |
-
answers_payload = []
|
80 |
-
print(f"Running agent on {len(questions_data)} questions...")
|
81 |
-
for item in questions_data:
|
82 |
-
task_id = item.get("task_id")
|
83 |
-
question_text = item.get("question")
|
84 |
-
if not task_id or question_text is None:
|
85 |
-
print(f"Skipping item with missing task_id or question: {item}")
|
86 |
-
continue
|
87 |
-
try:
|
88 |
-
submitted_answer = agent(question_text)
|
89 |
-
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
|
90 |
-
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
|
91 |
-
except Exception as e:
|
92 |
-
print(f"Error running agent on task {task_id}: {e}")
|
93 |
-
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
|
94 |
-
|
95 |
-
if not answers_payload:
|
96 |
-
print("Agent did not produce any answers to submit.")
|
97 |
-
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
|
98 |
-
|
99 |
-
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
|
100 |
-
status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
|
101 |
-
print(status_update)
|
102 |
-
|
103 |
-
print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
|
104 |
-
try:
|
105 |
-
response = requests.post(submit_url, json=submission_data, timeout=60)
|
106 |
-
response.raise_for_status()
|
107 |
-
result_data = response.json()
|
108 |
-
final_status = (
|
109 |
-
f"Submission Successful!\n"
|
110 |
-
f"User: {result_data.get('username')}\n"
|
111 |
-
f"Overall Score: {result_data.get('score', 'N/A')}% "
|
112 |
-
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
|
113 |
-
f"Message: {result_data.get('message', 'No message received.')}"
|
114 |
-
)
|
115 |
-
print("Submission successful.")
|
116 |
-
results_df = pd.DataFrame(results_log)
|
117 |
-
return final_status, results_df
|
118 |
-
except requests.exceptions.RequestException as e:
|
119 |
-
status_message = f"Submission Failed: {e}"
|
120 |
-
print(status_message)
|
121 |
-
results_df = pd.DataFrame(results_log)
|
122 |
-
return status_message, results_df
|
123 |
-
|
124 |
-
# --- Gradio Interface ---
|
125 |
-
with gr.Blocks() as demo:
|
126 |
-
gr.Markdown("# Math Solver and Explainer Agent")
|
127 |
-
gr.Markdown(
|
128 |
-
"""
|
129 |
-
**Instructions:**
|
130 |
-
|
131 |
-
1. Modify this agent to use symbolic math tools and explanations.
|
132 |
-
2. Log in to your Hugging Face account.
|
133 |
-
3. Run the agent and submit all answers for scoring.
|
134 |
-
"""
|
135 |
-
)
|
136 |
-
|
137 |
-
gr.LoginButton()
|
138 |
-
|
139 |
-
manual_input = gr.Textbox(label="Try the Agent Manually", placeholder="e.g., Solve for x: 2*x + 3 = 7")
|
140 |
-
manual_output = gr.Textbox(label="Agent Response", lines=4, interactive=False)
|
141 |
-
manual_test_button = gr.Button("Run Agent Locally")
|
142 |
-
|
143 |
-
run_button = gr.Button("Run Evaluation & Submit All Answers")
|
144 |
-
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
|
145 |
-
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
|
146 |
-
|
147 |
-
def run_manual_input(user_input):
|
148 |
-
agent = MathSolverAgent()
|
149 |
-
user_input = user_input.strip()
|
150 |
-
print(f"Manual input received: {user_input}")
|
151 |
-
return agent(user_input)
|
152 |
-
|
153 |
-
manual_test_button.click(fn=run_manual_input, inputs=manual_input, outputs=manual_output)
|
154 |
-
|
155 |
-
run_button.click(
|
156 |
-
fn=run_and_submit_all,
|
157 |
-
outputs=[status_output, results_table]
|
158 |
-
)
|
159 |
-
|
160 |
-
if __name__ == "__main__":
|
161 |
-
print("\n" + "-"*30 + " App Starting " + "-"*30)
|
162 |
-
space_host_startup = os.getenv("SPACE_HOST")
|
163 |
-
space_id_startup = os.getenv("SPACE_ID")
|
164 |
-
|
165 |
-
if space_host_startup:
|
166 |
-
print(f"β
SPACE_HOST found: {space_host_startup}")
|
167 |
-
print(f" Runtime URL should be: https://{space_host_startup}.hf.space")
|
168 |
-
else:
|
169 |
-
print("βΉοΈ SPACE_HOST environment variable not found (running locally?).")
|
170 |
-
|
171 |
-
if space_id_startup:
|
172 |
-
print(f"β
SPACE_ID found: {space_id_startup}")
|
173 |
-
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
|
174 |
-
print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
|
175 |
-
else:
|
176 |
-
print("βΉοΈ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")
|
177 |
-
|
178 |
-
print("-"*(60 + len(" App Starting ")) + "\n")
|
179 |
-
print("Launching Gradio Interface for Math Solver Agent...")
|
180 |
-
demo.launch(debug=True, share=False)
|
181 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
requirements.txt
CHANGED
@@ -1,6 +1,18 @@
|
|
1 |
gradio
|
2 |
requests
|
3 |
transformers
|
4 |
-
sympy
|
5 |
-
gradio
|
6 |
huggingface_hub
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
gradio
|
2 |
requests
|
3 |
transformers
|
|
|
|
|
4 |
huggingface_hub
|
5 |
+
langchain
|
6 |
+
openai
|
7 |
+
wikipedia
|
8 |
+
pytube
|
9 |
+
whisper
|
10 |
+
pillow
|
11 |
+
opencv-python
|
12 |
+
python-docx
|
13 |
+
PyMuPDF
|
14 |
+
youtube-transcript-api
|
15 |
+
openai-whisper
|
16 |
+
ffmpeg-python
|
17 |
+
python-chess
|
18 |
+
openpyxl
|
tools/__init__.py
CHANGED
@@ -1,8 +1,2 @@
|
|
1 |
# tools/__init__.py
|
2 |
|
3 |
-
from .tool_math import SolveEquationTool, ExplainSolutionTool
|
4 |
-
|
5 |
-
__all__ = [
|
6 |
-
"SolveEquationTool",
|
7 |
-
"ExplainSolutionTool",
|
8 |
-
]
|
|
|
1 |
# tools/__init__.py
|
2 |
|
|
|
|
|
|
|
|
|
|
|
|
tools/audio_transcriber.py
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# tools/audio_transcriber.py
|
2 |
+
|
3 |
+
import os
|
4 |
+
import tempfile
|
5 |
+
import whisper
|
6 |
+
|
7 |
+
# Load Whisper model only once (tiny, base, or small recommended for speed)
|
8 |
+
MODEL_NAME = "base"
|
9 |
+
whisper_model = whisper.load_model(MODEL_NAME)
|
10 |
+
|
11 |
+
def transcribe_audio(audio_file_path: str) -> str:
|
12 |
+
"""
|
13 |
+
Transcribes speech from an audio file using OpenAI Whisper.
|
14 |
+
|
15 |
+
Args:
|
16 |
+
audio_file_path (str): Path to the local audio file (.mp3, .wav, etc.).
|
17 |
+
|
18 |
+
Returns:
|
19 |
+
str: Transcribed text or error message.
|
20 |
+
"""
|
21 |
+
try:
|
22 |
+
result = whisper_model.transcribe(audio_file_path)
|
23 |
+
return result["text"].strip()
|
24 |
+
except Exception as e:
|
25 |
+
return f"Transcription error: {str(e)}"
|
tools/file_parser.py
ADDED
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# tools/file_parser.py
|
2 |
+
|
3 |
+
import pandas as pd
|
4 |
+
import os
|
5 |
+
|
6 |
+
def parse_file_and_summarize(file_path: str, query: str = "") -> str:
|
7 |
+
"""
|
8 |
+
Reads a CSV or Excel file and optionally answers a simple question about it.
|
9 |
+
|
10 |
+
Args:
|
11 |
+
file_path (str): Path to the file (.csv or .xlsx).
|
12 |
+
query (str): Optional freeform instruction (e.g. "total food sales").
|
13 |
+
|
14 |
+
Returns:
|
15 |
+
str: Summary or result from the file.
|
16 |
+
"""
|
17 |
+
try:
|
18 |
+
_, ext = os.path.splitext(file_path.lower())
|
19 |
+
if ext == ".csv":
|
20 |
+
df = pd.read_csv(file_path)
|
21 |
+
elif ext in [".xls", ".xlsx"]:
|
22 |
+
df = pd.read_excel(file_path)
|
23 |
+
else:
|
24 |
+
return "Unsupported file format. Please upload CSV or Excel."
|
25 |
+
|
26 |
+
if df.empty:
|
27 |
+
return "The file is empty or unreadable."
|
28 |
+
|
29 |
+
if not query:
|
30 |
+
return f"Loaded file with {df.shape[0]} rows and {df.shape[1]} columns.\nColumns: {', '.join(df.columns)}"
|
31 |
+
|
32 |
+
# Very basic natural language query handling (expand with LLM if needed)
|
33 |
+
if "total" in query.lower() and "food" in query.lower():
|
34 |
+
food_rows = df[df['category'].str.lower() == "food"]
|
35 |
+
if "sales" in df.columns:
|
36 |
+
total = food_rows["sales"].sum()
|
37 |
+
return f"Total food sales: ${total:.2f}"
|
38 |
+
else:
|
39 |
+
return "Could not find 'sales' column in the file."
|
40 |
+
else:
|
41 |
+
return "Query not supported. Please specify a clearer question."
|
42 |
+
|
43 |
+
except Exception as e:
|
44 |
+
return f"File parsing error: {str(e)}"
|
tools/image_chess_solver.py
ADDED
@@ -0,0 +1,50 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# tools/image_chess_solver.py
|
2 |
+
|
3 |
+
import chess
|
4 |
+
import chess.engine
|
5 |
+
import tempfile
|
6 |
+
from PIL import Image
|
7 |
+
|
8 |
+
# Path to your Stockfish binary (update if needed)
|
9 |
+
STOCKFISH_PATH = "/usr/bin/stockfish"
|
10 |
+
|
11 |
+
def analyze_position_from_fen(fen: str, time_limit: float = 1.0) -> str:
|
12 |
+
"""
|
13 |
+
Uses Stockfish to analyze the best move from a given FEN string.
|
14 |
+
|
15 |
+
Args:
|
16 |
+
fen (str): ForsythβEdwards Notation of the board.
|
17 |
+
time_limit (float): Time to let Stockfish think.
|
18 |
+
|
19 |
+
Returns:
|
20 |
+
str: Best move in algebraic notation.
|
21 |
+
"""
|
22 |
+
try:
|
23 |
+
board = chess.Board(fen)
|
24 |
+
engine = chess.engine.SimpleEngine.popen_uci(STOCKFISH_PATH)
|
25 |
+
result = engine.play(board, chess.engine.Limit(time=time_limit))
|
26 |
+
engine.quit()
|
27 |
+
return board.san(result.move)
|
28 |
+
except Exception as e:
|
29 |
+
return f"Stockfish error: {e}"
|
30 |
+
|
31 |
+
def solve_chess_image(image_path: str) -> str:
|
32 |
+
"""
|
33 |
+
Stub function for image-to-FEN. Replace with actual OCR/vision logic.
|
34 |
+
|
35 |
+
Args:
|
36 |
+
image_path (str): Path to chessboard image.
|
37 |
+
|
38 |
+
Returns:
|
39 |
+
str: Best move or error.
|
40 |
+
"""
|
41 |
+
# Placeholder FEN for development (e.g., black to move, guaranteed mate)
|
42 |
+
sample_fen = "6k1/5ppp/8/8/8/8/5PPP/6K1 b - - 0 1"
|
43 |
+
|
44 |
+
try:
|
45 |
+
print(f"Simulating FEN extraction from image: {image_path}")
|
46 |
+
# Replace the above with actual OCR image-to-FEN logic
|
47 |
+
best_move = analyze_position_from_fen(sample_fen)
|
48 |
+
return f"Detected FEN: {sample_fen}\nBest move for Black: {best_move}"
|
49 |
+
except Exception as e:
|
50 |
+
return f"Image analysis error: {e}"
|
tools/tool_math.py
DELETED
@@ -1,26 +0,0 @@
|
|
1 |
-
from sympy import symbols, Eq, solve, sympify
|
2 |
-
|
3 |
-
class SolveEquationTool:
|
4 |
-
name = "solve_equation"
|
5 |
-
description = "Solves a basic equation for x. Format: '2*x + 3 = 7'"
|
6 |
-
|
7 |
-
def __call__(self, equation: str) -> str:
|
8 |
-
x = symbols('x')
|
9 |
-
try:
|
10 |
-
if "=" not in equation:
|
11 |
-
return "Error: Equation must contain '=' sign. E.g., '2*x + 3 = 7'"
|
12 |
-
lhs, rhs = equation.split("=")
|
13 |
-
eq = Eq(sympify(lhs), sympify(rhs))
|
14 |
-
sol = solve(eq, x)
|
15 |
-
return f"x = {sol}"
|
16 |
-
except Exception as e:
|
17 |
-
return f"Error: {str(e)}"
|
18 |
-
|
19 |
-
class ExplainSolutionTool:
|
20 |
-
name = "explain_solution"
|
21 |
-
description = "Provides a hardcoded explanation for a known equation."
|
22 |
-
|
23 |
-
def __call__(self, problem: str) -> str:
|
24 |
-
if "2*x + 3 = 7" in problem.replace(" ", ""):
|
25 |
-
return "Step 1: Subtract 3 β 2x = 4\nStep 2: Divide by 2 β x = 2"
|
26 |
-
return "This agent currently only explains '2*x + 3 = 7'. Extend this for more coverage."
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
tools/wikipedia_tool.py
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# tools/wikipedia_tool.py
|
2 |
+
|
3 |
+
import wikipedia
|
4 |
+
|
5 |
+
wikipedia.set_lang("en")
|
6 |
+
|
7 |
+
def wiki_search(query: str) -> str:
|
8 |
+
"""
|
9 |
+
Search Wikipedia and return a short summary of the topic.
|
10 |
+
|
11 |
+
Args:
|
12 |
+
query (str): The search query.
|
13 |
+
|
14 |
+
Returns:
|
15 |
+
str: Summary text or error message.
|
16 |
+
"""
|
17 |
+
try:
|
18 |
+
# Try to fetch a summary of the most relevant page
|
19 |
+
return wikipedia.summary(query, sentences=3, auto_suggest=True, redirect=True)
|
20 |
+
except wikipedia.DisambiguationError as e:
|
21 |
+
# If multiple results, return options
|
22 |
+
pass
|
tools/youtube_tool.py
ADDED
@@ -0,0 +1,47 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# tools/youtube_tool.py
|
2 |
+
|
3 |
+
from youtube_transcript_api import YouTubeTranscriptApi
|
4 |
+
from youtube_transcript_api._errors import TranscriptsDisabled, NoTranscriptFound
|
5 |
+
import re
|
6 |
+
|
7 |
+
def extract_video_id(url: str) -> str:
|
8 |
+
"""
|
9 |
+
Extracts the video ID from a YouTube URL.
|
10 |
+
|
11 |
+
Args:
|
12 |
+
url (str): The full YouTube video URL.
|
13 |
+
|
14 |
+
Returns:
|
15 |
+
str: The extracted video ID or raises ValueError.
|
16 |
+
"""
|
17 |
+
patterns = [
|
18 |
+
r"youtube\.com/watch\?v=([a-zA-Z0-9_-]{11})",
|
19 |
+
r"youtu\.be/([a-zA-Z0-9_-]{11})"
|
20 |
+
]
|
21 |
+
for pattern in patterns:
|
22 |
+
match = re.search(pattern, url)
|
23 |
+
if match:
|
24 |
+
return match.group(1)
|
25 |
+
raise ValueError("Invalid YouTube URL or unable to extract video ID.")
|
26 |
+
|
27 |
+
def get_youtube_transcript(url: str) -> str:
|
28 |
+
"""
|
29 |
+
Fetches the transcript text for a given YouTube video.
|
30 |
+
|
31 |
+
Args:
|
32 |
+
url (str): The YouTube video URL.
|
33 |
+
|
34 |
+
Returns:
|
35 |
+
str: Combined transcript text or an error message.
|
36 |
+
"""
|
37 |
+
try:
|
38 |
+
video_id = extract_video_id(url)
|
39 |
+
transcript_list = YouTubeTranscriptApi.get_transcript(video_id)
|
40 |
+
full_text = " ".join([entry["text"] for entry in transcript_list])
|
41 |
+
return full_text.strip()[:2000] # Truncate to 2000 chars to prevent token overflow
|
42 |
+
except TranscriptsDisabled:
|
43 |
+
return "This video has transcripts disabled."
|
44 |
+
except NoTranscriptFound:
|
45 |
+
return "No transcript was found for this video."
|
46 |
+
except Exception as e:
|
47 |
+
return f"Transcript error: {str(e)}"
|