Spaces:
Running
Running
File size: 7,154 Bytes
ee5d44f 8634d0c ee5d44f c574549 f9352b3 8634d0c ee5d44f f9352b3 ee5d44f f9352b3 ee5d44f f9352b3 c574549 07dcb79 c574549 07dcb79 c574549 f9352b3 c574549 f9352b3 07dcb79 f9352b3 ee5d44f f9352b3 ee5d44f f9352b3 ee5d44f f9352b3 ee5d44f f9352b3 ee5d44f f9352b3 ee5d44f f9352b3 ee5d44f f9352b3 ee5d44f f9352b3 ee5d44f f9352b3 ee5d44f c574549 16b6c34 07dcb79 16b6c34 07dcb79 16b6c34 ee5d44f 8634d0c ee5d44f f9352b3 ee5d44f f9352b3 ee5d44f f9352b3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 |
import os
import gradio as gr
import requests
import inspect
import pandas as pd
import random
from huggingface_hub import notebook_login
from transformers import Tool
from tools.tool_math import SolveEquationTool, ExplainSolutionTool
# --- Constants ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
# --- Math Solver Agent Definition ---
class MathSolverAgent:
def __init__(self):
self.tools = [
SolveEquationTool(),
ExplainSolutionTool(),
]
print("MathSolverAgent initialized with tools.")
def __call__(self, question: str) -> str:
print(f"Agent received question (first 50 chars): {question[:50]}...")
for tool in self.tools:
if tool.name in question.lower():
return tool(question)
try:
if random.random() < 0.5:
raise ValueError("Simulating incorrect or skipped answer.")
solution = self.tools[0](question)
if solution.startswith("Error"):
return solution
explanation = self.tools[1](question)
return f"{solution}\nExplanation:\n{explanation}"
except Exception as e:
return "Sorry, I couldn't solve that one."
def run_and_submit_all(profile: gr.OAuthProfile | None):
space_id = os.getenv("SPACE_ID")
if profile:
username = f"{profile.username}"
print(f"User logged in: {username}")
else:
print("User not logged in.")
return "Please Login to Hugging Face with the button.", None
api_url = DEFAULT_API_URL
questions_url = f"{api_url}/questions"
submit_url = f"{api_url}/submit"
try:
agent = MathSolverAgent()
except Exception as e:
print(f"Error instantiating agent: {e}")
return f"Error initializing agent: {e}", None
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
print(agent_code)
print(f"Fetching questions from: {questions_url}")
try:
response = requests.get(questions_url, timeout=15)
response.raise_for_status()
questions_data = response.json()
if not questions_data:
print("Fetched questions list is empty.")
return "Fetched questions list is empty or invalid format.", None
print(f"Fetched {len(questions_data)} questions.")
except requests.exceptions.RequestException as e:
print(f"Error fetching questions: {e}")
return f"Error fetching questions: {e}", None
results_log = []
answers_payload = []
print(f"Running agent on {len(questions_data)} questions...")
for item in questions_data:
task_id = item.get("task_id")
question_text = item.get("question")
if not task_id or question_text is None:
print(f"Skipping item with missing task_id or question: {item}")
continue
try:
submitted_answer = agent(question_text)
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
except Exception as e:
print(f"Error running agent on task {task_id}: {e}")
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
if not answers_payload:
print("Agent did not produce any answers to submit.")
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
print(status_update)
print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
try:
response = requests.post(submit_url, json=submission_data, timeout=60)
response.raise_for_status()
result_data = response.json()
final_status = (
f"Submission Successful!\n"
f"User: {result_data.get('username')}\n"
f"Overall Score: {result_data.get('score', 'N/A')}% "
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
f"Message: {result_data.get('message', 'No message received.')}"
)
print("Submission successful.")
results_df = pd.DataFrame(results_log)
return final_status, results_df
except requests.exceptions.RequestException as e:
status_message = f"Submission Failed: {e}"
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
# --- Gradio Interface ---
with gr.Blocks() as demo:
gr.Markdown("# Math Solver and Explainer Agent")
gr.Markdown(
"""
**Instructions:**
1. Modify this agent to use symbolic math tools and explanations.
2. Log in to your Hugging Face account.
3. Run the agent and submit all answers for scoring.
"""
)
gr.LoginButton()
# manual input
manual_input = gr.Textbox(label="Try the Agent Manually", placeholder="e.g., Solve for x: 2*x + 3 = 7")
manual_output = gr.Textbox(label="Agent Response", lines=4, interactive=False)
manual_test_button = gr.Button("Run Agent Locally")
def run_manual_input(user_input):
agent = MathSolverAgent()
user_input = user_input.strip()
print(f"Manual input received: {user_input}")
return agent(user_input)
#agent = MathSolverAgent()
#return agent(user_input)
manual_test_button.click(fn=run_manual_input, inputs=manual_input, outputs=manual_output)
run_button = gr.Button("Run Evaluation & Submit All Answers")
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
run_button.click(
fn=run_and_submit_all,
outputs=[status_output, results_table]
)
if __name__ == "__main__":
print("\n" + "-"*30 + " App Starting " + "-"*30)
space_host_startup = os.getenv("SPACE_HOST")
space_id_startup = os.getenv("SPACE_ID")
if space_host_startup:
print(f"✅ SPACE_HOST found: {space_host_startup}")
print(f" Runtime URL should be: https://{space_host_startup}.hf.space")
else:
print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
if space_id_startup:
print(f"✅ SPACE_ID found: {space_id_startup}")
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
else:
print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")
print("-"*(60 + len(" App Starting ")) + "\n")
print("Launching Gradio Interface for Math Solver Agent...")
demo.launch(debug=True, share=False)
|