File size: 7,154 Bytes
ee5d44f
8634d0c
ee5d44f
 
 
c574549
f9352b3
 
 
8634d0c
ee5d44f
 
 
f9352b3
 
ee5d44f
f9352b3
 
 
 
 
 
ee5d44f
 
f9352b3
 
 
 
 
c574549
 
07dcb79
c574549
07dcb79
 
 
c574549
f9352b3
 
c574549
f9352b3
07dcb79
f9352b3
 
ee5d44f
 
f9352b3
ee5d44f
 
 
 
 
 
 
 
 
 
f9352b3
ee5d44f
 
 
f9352b3
ee5d44f
 
 
 
 
 
 
 
 
f9352b3
 
ee5d44f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f9352b3
 
ee5d44f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f9352b3
ee5d44f
 
 
 
f9352b3
ee5d44f
f9352b3
ee5d44f
 
 
 
f9352b3
 
 
ee5d44f
 
 
 
c574549
 
16b6c34
 
 
 
 
 
07dcb79
 
16b6c34
07dcb79
 
16b6c34
 
 
 
ee5d44f
 
 
 
 
 
 
 
 
8634d0c
 
ee5d44f
 
f9352b3
ee5d44f
 
 
 
 
 
 
f9352b3
ee5d44f
 
 
 
 
 
 
f9352b3
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
import os
import gradio as gr
import requests
import inspect
import pandas as pd
import random
from huggingface_hub import notebook_login
from transformers import Tool
from tools.tool_math import SolveEquationTool, ExplainSolutionTool

# --- Constants ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"

# --- Math Solver Agent Definition ---
class MathSolverAgent:
    def __init__(self):
        self.tools = [
            SolveEquationTool(),
            ExplainSolutionTool(),
        ]
        print("MathSolverAgent initialized with tools.")

    def __call__(self, question: str) -> str:
        print(f"Agent received question (first 50 chars): {question[:50]}...")
        for tool in self.tools:
            if tool.name in question.lower():
                return tool(question)

        try:
            if random.random() < 0.5:
                raise ValueError("Simulating incorrect or skipped answer.")

            solution = self.tools[0](question)
            if solution.startswith("Error"):
                return solution

            explanation = self.tools[1](question)
            return f"{solution}\nExplanation:\n{explanation}"
        except Exception as e:
            return "Sorry, I couldn't solve that one."


def run_and_submit_all(profile: gr.OAuthProfile | None):
    space_id = os.getenv("SPACE_ID")

    if profile:
        username = f"{profile.username}"
        print(f"User logged in: {username}")
    else:
        print("User not logged in.")
        return "Please Login to Hugging Face with the button.", None

    api_url = DEFAULT_API_URL
    questions_url = f"{api_url}/questions"
    submit_url = f"{api_url}/submit"

    try:
        agent = MathSolverAgent()
    except Exception as e:
        print(f"Error instantiating agent: {e}")
        return f"Error initializing agent: {e}", None

    agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
    print(agent_code)

    print(f"Fetching questions from: {questions_url}")
    try:
        response = requests.get(questions_url, timeout=15)
        response.raise_for_status()
        questions_data = response.json()
        if not questions_data:
            print("Fetched questions list is empty.")
            return "Fetched questions list is empty or invalid format.", None
        print(f"Fetched {len(questions_data)} questions.")
    except requests.exceptions.RequestException as e:
        print(f"Error fetching questions: {e}")
        return f"Error fetching questions: {e}", None

    results_log = []
    answers_payload = []
    print(f"Running agent on {len(questions_data)} questions...")
    for item in questions_data:
        task_id = item.get("task_id")
        question_text = item.get("question")
        if not task_id or question_text is None:
            print(f"Skipping item with missing task_id or question: {item}")
            continue
        try:
            submitted_answer = agent(question_text)
            answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
            results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
        except Exception as e:
            print(f"Error running agent on task {task_id}: {e}")
            results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})

    if not answers_payload:
        print("Agent did not produce any answers to submit.")
        return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)

    submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
    status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
    print(status_update)

    print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
    try:
        response = requests.post(submit_url, json=submission_data, timeout=60)
        response.raise_for_status()
        result_data = response.json()
        final_status = (
            f"Submission Successful!\n"
            f"User: {result_data.get('username')}\n"
            f"Overall Score: {result_data.get('score', 'N/A')}% "
            f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
            f"Message: {result_data.get('message', 'No message received.')}"
        )
        print("Submission successful.")
        results_df = pd.DataFrame(results_log)
        return final_status, results_df
    except requests.exceptions.RequestException as e:
        status_message = f"Submission Failed: {e}"
        print(status_message)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df

# --- Gradio Interface ---
with gr.Blocks() as demo:
    gr.Markdown("# Math Solver and Explainer Agent")
    gr.Markdown(
        """
        **Instructions:**

        1.  Modify this agent to use symbolic math tools and explanations.
        2.  Log in to your Hugging Face account.
        3.  Run the agent and submit all answers for scoring.
        """
    )

    gr.LoginButton()
    
    # manual input
    manual_input = gr.Textbox(label="Try the Agent Manually", placeholder="e.g., Solve for x: 2*x + 3 = 7")
    manual_output = gr.Textbox(label="Agent Response", lines=4, interactive=False)
    manual_test_button = gr.Button("Run Agent Locally")

    def run_manual_input(user_input):
        agent = MathSolverAgent()
        user_input = user_input.strip()
        print(f"Manual input received: {user_input}")
        return agent(user_input)
        #agent = MathSolverAgent()
        #return agent(user_input)

    manual_test_button.click(fn=run_manual_input, inputs=manual_input, outputs=manual_output)


    run_button = gr.Button("Run Evaluation & Submit All Answers")

    status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
    results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)

    run_button.click(
        fn=run_and_submit_all,
        outputs=[status_output, results_table]
    )

if __name__ == "__main__":
    print("\n" + "-"*30 + " App Starting " + "-"*30)
    space_host_startup = os.getenv("SPACE_HOST")
    space_id_startup = os.getenv("SPACE_ID")

    if space_host_startup:
        print(f"✅ SPACE_HOST found: {space_host_startup}")
        print(f"   Runtime URL should be: https://{space_host_startup}.hf.space")
    else:
        print("ℹ️  SPACE_HOST environment variable not found (running locally?).")

    if space_id_startup:
        print(f"✅ SPACE_ID found: {space_id_startup}")
        print(f"   Repo URL: https://huggingface.co/spaces/{space_id_startup}")
        print(f"   Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
    else:
        print("ℹ️  SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")

    print("-"*(60 + len(" App Starting ")) + "\n")
    print("Launching Gradio Interface for Math Solver Agent...")
    demo.launch(debug=True, share=False)