Spaces:
Runtime error
Runtime error
Upload imagedream/ldm/models/autoencoder.py with huggingface_hub
Browse files
imagedream/ldm/models/autoencoder.py
ADDED
@@ -0,0 +1,270 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn.functional as F
|
3 |
+
from contextlib import contextmanager
|
4 |
+
|
5 |
+
from ..modules.diffusionmodules.model import Encoder, Decoder
|
6 |
+
from ..modules.distributions.distributions import DiagonalGaussianDistribution
|
7 |
+
|
8 |
+
from ..util import instantiate_from_config
|
9 |
+
from ..modules.ema import LitEma
|
10 |
+
|
11 |
+
|
12 |
+
class AutoencoderKL(torch.nn.Module):
|
13 |
+
def __init__(
|
14 |
+
self,
|
15 |
+
ddconfig,
|
16 |
+
lossconfig,
|
17 |
+
embed_dim,
|
18 |
+
ckpt_path=None,
|
19 |
+
ignore_keys=[],
|
20 |
+
image_key="image",
|
21 |
+
colorize_nlabels=None,
|
22 |
+
monitor=None,
|
23 |
+
ema_decay=None,
|
24 |
+
learn_logvar=False,
|
25 |
+
):
|
26 |
+
super().__init__()
|
27 |
+
self.learn_logvar = learn_logvar
|
28 |
+
self.image_key = image_key
|
29 |
+
self.encoder = Encoder(**ddconfig)
|
30 |
+
self.decoder = Decoder(**ddconfig)
|
31 |
+
self.loss = instantiate_from_config(lossconfig)
|
32 |
+
assert ddconfig["double_z"]
|
33 |
+
self.quant_conv = torch.nn.Conv2d(2 * ddconfig["z_channels"], 2 * embed_dim, 1)
|
34 |
+
self.post_quant_conv = torch.nn.Conv2d(embed_dim, ddconfig["z_channels"], 1)
|
35 |
+
self.embed_dim = embed_dim
|
36 |
+
if colorize_nlabels is not None:
|
37 |
+
assert type(colorize_nlabels) == int
|
38 |
+
self.register_buffer("colorize", torch.randn(3, colorize_nlabels, 1, 1))
|
39 |
+
if monitor is not None:
|
40 |
+
self.monitor = monitor
|
41 |
+
|
42 |
+
self.use_ema = ema_decay is not None
|
43 |
+
if self.use_ema:
|
44 |
+
self.ema_decay = ema_decay
|
45 |
+
assert 0.0 < ema_decay < 1.0
|
46 |
+
self.model_ema = LitEma(self, decay=ema_decay)
|
47 |
+
print(f"Keeping EMAs of {len(list(self.model_ema.buffers()))}.")
|
48 |
+
|
49 |
+
if ckpt_path is not None:
|
50 |
+
self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys)
|
51 |
+
|
52 |
+
def init_from_ckpt(self, path, ignore_keys=list()):
|
53 |
+
sd = torch.load(path, map_location="cpu")["state_dict"]
|
54 |
+
keys = list(sd.keys())
|
55 |
+
for k in keys:
|
56 |
+
for ik in ignore_keys:
|
57 |
+
if k.startswith(ik):
|
58 |
+
print("Deleting key {} from state_dict.".format(k))
|
59 |
+
del sd[k]
|
60 |
+
self.load_state_dict(sd, strict=False)
|
61 |
+
print(f"Restored from {path}")
|
62 |
+
|
63 |
+
@contextmanager
|
64 |
+
def ema_scope(self, context=None):
|
65 |
+
if self.use_ema:
|
66 |
+
self.model_ema.store(self.parameters())
|
67 |
+
self.model_ema.copy_to(self)
|
68 |
+
if context is not None:
|
69 |
+
print(f"{context}: Switched to EMA weights")
|
70 |
+
try:
|
71 |
+
yield None
|
72 |
+
finally:
|
73 |
+
if self.use_ema:
|
74 |
+
self.model_ema.restore(self.parameters())
|
75 |
+
if context is not None:
|
76 |
+
print(f"{context}: Restored training weights")
|
77 |
+
|
78 |
+
def on_train_batch_end(self, *args, **kwargs):
|
79 |
+
if self.use_ema:
|
80 |
+
self.model_ema(self)
|
81 |
+
|
82 |
+
def encode(self, x):
|
83 |
+
h = self.encoder(x)
|
84 |
+
moments = self.quant_conv(h)
|
85 |
+
posterior = DiagonalGaussianDistribution(moments)
|
86 |
+
return posterior
|
87 |
+
|
88 |
+
def decode(self, z):
|
89 |
+
z = self.post_quant_conv(z)
|
90 |
+
dec = self.decoder(z)
|
91 |
+
return dec
|
92 |
+
|
93 |
+
def forward(self, input, sample_posterior=True):
|
94 |
+
posterior = self.encode(input)
|
95 |
+
if sample_posterior:
|
96 |
+
z = posterior.sample()
|
97 |
+
else:
|
98 |
+
z = posterior.mode()
|
99 |
+
dec = self.decode(z)
|
100 |
+
return dec, posterior
|
101 |
+
|
102 |
+
def get_input(self, batch, k):
|
103 |
+
x = batch[k]
|
104 |
+
if len(x.shape) == 3:
|
105 |
+
x = x[..., None]
|
106 |
+
x = x.permute(0, 3, 1, 2).to(memory_format=torch.contiguous_format).float()
|
107 |
+
return x
|
108 |
+
|
109 |
+
def training_step(self, batch, batch_idx, optimizer_idx):
|
110 |
+
inputs = self.get_input(batch, self.image_key)
|
111 |
+
reconstructions, posterior = self(inputs)
|
112 |
+
|
113 |
+
if optimizer_idx == 0:
|
114 |
+
# train encoder+decoder+logvar
|
115 |
+
aeloss, log_dict_ae = self.loss(
|
116 |
+
inputs,
|
117 |
+
reconstructions,
|
118 |
+
posterior,
|
119 |
+
optimizer_idx,
|
120 |
+
self.global_step,
|
121 |
+
last_layer=self.get_last_layer(),
|
122 |
+
split="train",
|
123 |
+
)
|
124 |
+
self.log(
|
125 |
+
"aeloss",
|
126 |
+
aeloss,
|
127 |
+
prog_bar=True,
|
128 |
+
logger=True,
|
129 |
+
on_step=True,
|
130 |
+
on_epoch=True,
|
131 |
+
)
|
132 |
+
self.log_dict(
|
133 |
+
log_dict_ae, prog_bar=False, logger=True, on_step=True, on_epoch=False
|
134 |
+
)
|
135 |
+
return aeloss
|
136 |
+
|
137 |
+
if optimizer_idx == 1:
|
138 |
+
# train the discriminator
|
139 |
+
discloss, log_dict_disc = self.loss(
|
140 |
+
inputs,
|
141 |
+
reconstructions,
|
142 |
+
posterior,
|
143 |
+
optimizer_idx,
|
144 |
+
self.global_step,
|
145 |
+
last_layer=self.get_last_layer(),
|
146 |
+
split="train",
|
147 |
+
)
|
148 |
+
|
149 |
+
self.log(
|
150 |
+
"discloss",
|
151 |
+
discloss,
|
152 |
+
prog_bar=True,
|
153 |
+
logger=True,
|
154 |
+
on_step=True,
|
155 |
+
on_epoch=True,
|
156 |
+
)
|
157 |
+
self.log_dict(
|
158 |
+
log_dict_disc, prog_bar=False, logger=True, on_step=True, on_epoch=False
|
159 |
+
)
|
160 |
+
return discloss
|
161 |
+
|
162 |
+
def validation_step(self, batch, batch_idx):
|
163 |
+
log_dict = self._validation_step(batch, batch_idx)
|
164 |
+
with self.ema_scope():
|
165 |
+
log_dict_ema = self._validation_step(batch, batch_idx, postfix="_ema")
|
166 |
+
return log_dict
|
167 |
+
|
168 |
+
def _validation_step(self, batch, batch_idx, postfix=""):
|
169 |
+
inputs = self.get_input(batch, self.image_key)
|
170 |
+
reconstructions, posterior = self(inputs)
|
171 |
+
aeloss, log_dict_ae = self.loss(
|
172 |
+
inputs,
|
173 |
+
reconstructions,
|
174 |
+
posterior,
|
175 |
+
0,
|
176 |
+
self.global_step,
|
177 |
+
last_layer=self.get_last_layer(),
|
178 |
+
split="val" + postfix,
|
179 |
+
)
|
180 |
+
|
181 |
+
discloss, log_dict_disc = self.loss(
|
182 |
+
inputs,
|
183 |
+
reconstructions,
|
184 |
+
posterior,
|
185 |
+
1,
|
186 |
+
self.global_step,
|
187 |
+
last_layer=self.get_last_layer(),
|
188 |
+
split="val" + postfix,
|
189 |
+
)
|
190 |
+
|
191 |
+
self.log(f"val{postfix}/rec_loss", log_dict_ae[f"val{postfix}/rec_loss"])
|
192 |
+
self.log_dict(log_dict_ae)
|
193 |
+
self.log_dict(log_dict_disc)
|
194 |
+
return self.log_dict
|
195 |
+
|
196 |
+
def configure_optimizers(self):
|
197 |
+
lr = self.learning_rate
|
198 |
+
ae_params_list = (
|
199 |
+
list(self.encoder.parameters())
|
200 |
+
+ list(self.decoder.parameters())
|
201 |
+
+ list(self.quant_conv.parameters())
|
202 |
+
+ list(self.post_quant_conv.parameters())
|
203 |
+
)
|
204 |
+
if self.learn_logvar:
|
205 |
+
print(f"{self.__class__.__name__}: Learning logvar")
|
206 |
+
ae_params_list.append(self.loss.logvar)
|
207 |
+
opt_ae = torch.optim.Adam(ae_params_list, lr=lr, betas=(0.5, 0.9))
|
208 |
+
opt_disc = torch.optim.Adam(
|
209 |
+
self.loss.discriminator.parameters(), lr=lr, betas=(0.5, 0.9)
|
210 |
+
)
|
211 |
+
return [opt_ae, opt_disc], []
|
212 |
+
|
213 |
+
def get_last_layer(self):
|
214 |
+
return self.decoder.conv_out.weight
|
215 |
+
|
216 |
+
@torch.no_grad()
|
217 |
+
def log_images(self, batch, only_inputs=False, log_ema=False, **kwargs):
|
218 |
+
log = dict()
|
219 |
+
x = self.get_input(batch, self.image_key)
|
220 |
+
x = x.to(self.device)
|
221 |
+
if not only_inputs:
|
222 |
+
xrec, posterior = self(x)
|
223 |
+
if x.shape[1] > 3:
|
224 |
+
# colorize with random projection
|
225 |
+
assert xrec.shape[1] > 3
|
226 |
+
x = self.to_rgb(x)
|
227 |
+
xrec = self.to_rgb(xrec)
|
228 |
+
log["samples"] = self.decode(torch.randn_like(posterior.sample()))
|
229 |
+
log["reconstructions"] = xrec
|
230 |
+
if log_ema or self.use_ema:
|
231 |
+
with self.ema_scope():
|
232 |
+
xrec_ema, posterior_ema = self(x)
|
233 |
+
if x.shape[1] > 3:
|
234 |
+
# colorize with random projection
|
235 |
+
assert xrec_ema.shape[1] > 3
|
236 |
+
xrec_ema = self.to_rgb(xrec_ema)
|
237 |
+
log["samples_ema"] = self.decode(
|
238 |
+
torch.randn_like(posterior_ema.sample())
|
239 |
+
)
|
240 |
+
log["reconstructions_ema"] = xrec_ema
|
241 |
+
log["inputs"] = x
|
242 |
+
return log
|
243 |
+
|
244 |
+
def to_rgb(self, x):
|
245 |
+
assert self.image_key == "segmentation"
|
246 |
+
if not hasattr(self, "colorize"):
|
247 |
+
self.register_buffer("colorize", torch.randn(3, x.shape[1], 1, 1).to(x))
|
248 |
+
x = F.conv2d(x, weight=self.colorize)
|
249 |
+
x = 2.0 * (x - x.min()) / (x.max() - x.min()) - 1.0
|
250 |
+
return x
|
251 |
+
|
252 |
+
|
253 |
+
class IdentityFirstStage(torch.nn.Module):
|
254 |
+
def __init__(self, *args, vq_interface=False, **kwargs):
|
255 |
+
self.vq_interface = vq_interface
|
256 |
+
super().__init__()
|
257 |
+
|
258 |
+
def encode(self, x, *args, **kwargs):
|
259 |
+
return x
|
260 |
+
|
261 |
+
def decode(self, x, *args, **kwargs):
|
262 |
+
return x
|
263 |
+
|
264 |
+
def quantize(self, x, *args, **kwargs):
|
265 |
+
if self.vq_interface:
|
266 |
+
return x, None, [None, None, None]
|
267 |
+
return x
|
268 |
+
|
269 |
+
def forward(self, x, *args, **kwargs):
|
270 |
+
return x
|