Spaces:
Running
Running
File size: 9,797 Bytes
9cb3fae 99fbd2b 9cb3fae 99fbd2b f9037f8 9cb3fae f9037f8 9cb3fae 99fbd2b 9cb3fae 99fbd2b 79f51b5 99fbd2b 9cb3fae 99fbd2b f9037f8 99fbd2b 9cb3fae f9037f8 9cb3fae 99fbd2b 9cb3fae f9037f8 9cb3fae 99fbd2b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 |
from fastapi import FastAPI, Request
from fastapi.responses import StreamingResponse
from fastapi.middleware.cors import CORSMiddleware
from typing import List, Dict, Any, Optional
from pydantic import BaseModel
import asyncio
import httpx
import random
from config import cookies, headers, groqapi
from prompts import ChiplingPrompts
from groq import Groq
import json
from fastapi.responses import HTMLResponse
from fastapi.templating import Jinja2Templates
from pathlib import Path
from collections import Counter, defaultdict
from utils.logger import log_request
app = FastAPI()
# Add CORS middleware
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
templates = Jinja2Templates(directory="templates")
LOG_FILE = Path("logs.json")
@app.get("/dashboard", response_class=HTMLResponse)
async def dashboard(request: Request, endpoint: str = None):
try:
with open("logs.json") as f:
logs = json.load(f)
except FileNotFoundError:
logs = []
# Filter logs
if endpoint:
logs = [log for log in logs if log["endpoint"] == endpoint]
# Summary stats
total_requests = len(logs)
endpoint_counts = Counter(log["endpoint"] for log in logs)
query_counts = Counter(log["query"] for log in logs)
# Requests per date
date_counts = defaultdict(int)
for log in logs:
date = log["timestamp"].split("T")[0]
date_counts[date] += 1
# Sort logs by timestamp (desc)
logs_sorted = sorted(logs, key=lambda x: x["timestamp"], reverse=True)
return templates.TemplateResponse("dashboard.html", {
"request": request,
"logs": logs_sorted[:100], # show top 100
"total_requests": total_requests,
"endpoint_counts": dict(endpoint_counts),
"query_counts": query_counts.most_common(5),
"date_counts": dict(date_counts),
"filter_endpoint": endpoint or "",
})
# Define request model
class ChatRequest(BaseModel):
message: str
messages: List[Dict[Any, Any]]
model: Optional[str] = "meta-llama/Llama-4-Maverick-17B-128E-Instruct-FP8"
client = Groq(api_key=groqapi)
async def generate(json_data: Dict[str, Any]):
max_retries = 5
for attempt in range(max_retries):
async with httpx.AsyncClient(timeout=None) as client:
try:
request_ctx = client.stream(
"POST",
"https://api.together.ai/inference",
cookies=cookies,
headers=headers,
json=json_data
)
async with request_ctx as response:
if response.status_code == 200:
async for line in response.aiter_lines():
if line:
yield f"{line}\n"
return
elif response.status_code == 429:
if attempt < max_retries - 1:
await asyncio.sleep(0.5)
continue
yield "data: [Rate limited, max retries]\n\n"
return
else:
yield f"data: [Unexpected status code: {response.status_code}]\n\n"
return
except Exception as e:
yield f"data: [Connection error: {str(e)}]\n\n"
return
yield "data: [Max retries reached]\n\n"
def convert_to_groq_schema(messages: List[Dict[str, Any]]) -> List[Dict[str, str]]:
converted = []
for message in messages:
role = message.get("role", "user")
content = message.get("content")
if isinstance(content, list):
flattened = []
for item in content:
if isinstance(item, dict) and item.get("type") == "text":
flattened.append(item.get("text", ""))
content = "\n".join(flattened)
elif not isinstance(content, str):
content = str(content)
converted.append({"role": role, "content": content})
return converted
async def groqgenerate(json_data: Dict[str, Any]):
try:
messages = convert_to_groq_schema(json_data["messages"])
chunk_id = "groq-" + "".join(random.choices("0123456789abcdef", k=32))
created = int(asyncio.get_event_loop().time())
# Create streaming response
stream = client.chat.completions.create(
messages=messages,
model="meta-llama/llama-4-scout-17b-16e-instruct",
temperature=json_data.get("temperature", 0.7),
max_completion_tokens=json_data.get("max_tokens", 1024),
top_p=json_data.get("top_p", 1),
stop=json_data.get("stop", None),
stream=True,
)
total_tokens = 0
# Use normal for-loop since stream is not async
for chunk in stream:
content = chunk.choices[0].delta.content
if content:
response = {
"id": chunk_id,
"object": "chat.completion.chunk",
"created": created,
"model": json_data.get("model", "llama-3.3-70b-versatile"),
"choices": [{
"index": 0,
"text": content,
"logprobs": None,
"finish_reason": None
}],
"usage": None
}
yield f"data: {json.dumps(response)}\n\n"
total_tokens += 1
final = {
"id": chunk_id,
"object": "chat.completion.chunk",
"created": created,
"model": json_data.get("model", "llama-3.3-70b-versatile"),
"choices": [],
"usage": {
"prompt_tokens": len(messages),
"completion_tokens": total_tokens,
"total_tokens": len(messages) + total_tokens,
}
}
yield f"data: {json.dumps(final)}\n\n"
yield "data: [DONE]\n\n"
except Exception as e:
generate(json_data)
@app.get("/")
async def index():
return {"status": "ok"}
@app.post("/chat")
async def chat(request: ChatRequest):
current_messages = request.messages.copy()
# Handle both single text or list content
if request.messages and isinstance(request.messages[-1].get('content'), list):
current_messages = request.messages
else:
current_messages.append({
'content': [{
'type': 'text',
'text': request.message
}],
'role': 'user'
})
json_data = {
'model': request.model,
'max_tokens': None,
'temperature': 0.7,
'top_p': 0.7,
'top_k': 50,
'repetition_penalty': 1,
'stream_tokens': True,
'stop': ['<|eot_id|>', '<|eom_id|>'],
'messages': current_messages,
'stream': True,
}
selected_generator = random.choice([groqgenerate, generate])
log_request("/chat", selected_generator.__name__)
return StreamingResponse(selected_generator(json_data), media_type='text/event-stream')
@app.post("/generate-modules")
async def generate_modules(request: Request):
data = await request.json()
search_query = data.get("searchQuery")
log_request("/generate-modules", search_query)
if not search_query:
return {"error": "searchQuery is required"}
system_prompt = ChiplingPrompts.generateModules(search_query)
current_messages = [
{
'role': 'system',
'content': [{
'type': 'text',
'text': system_prompt
}]
},
{
'role': 'user',
'content': [{
'type': 'text',
'text': search_query
}]
}
]
json_data = {
'model': "meta-llama/Llama-4-Maverick-17B-128E-Instruct-FP8",
'max_tokens': None,
'temperature': 0.7,
'top_p': 0.7,
'top_k': 50,
'repetition_penalty': 1,
'stream_tokens': True,
'stop': ['<|eot_id|>', '<|eom_id|>'],
'messages': current_messages,
'stream': True,
}
selected_generator = random.choice([groqgenerate])
return StreamingResponse(selected_generator(json_data), media_type='text/event-stream')
@app.post("/generate-topics")
async def generate_topics(request: Request):
data = await request.json()
search_query = data.get("searchQuery")
if not search_query:
return {"error": "searchQuery is required"}
log_request("/generate-topics", search_query)
system_prompt = ChiplingPrompts.generateTopics(search_query)
current_messages = [
{
'role': 'system',
'content': [{
'type': 'text',
'text': system_prompt
}]
},
{
'role': 'user',
'content': [{
'type': 'text',
'text': search_query
}]
}
]
json_data = {
'model': "meta-llama/Llama-4-Maverick-17B-128E-Instruct-FP8",
'max_tokens': None,
'temperature': 0.7,
'top_p': 0.7,
'top_k': 50,
'repetition_penalty': 1,
'stream_tokens': True,
'stop': ['<|eot_id|>', '<|eom_id|>'],
'messages': current_messages,
'stream': True,
}
selected_generator = random.choice([groqgenerate, generate])
return StreamingResponse(selected_generator(json_data), media_type='text/event-stream') |