File size: 9,797 Bytes
9cb3fae
 
 
 
 
 
 
99fbd2b
 
9cb3fae
99fbd2b
 
f9037f8
 
 
 
 
9cb3fae
 
 
 
 
 
 
 
 
 
 
 
f9037f8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9cb3fae
 
 
 
 
 
99fbd2b
 
9cb3fae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
99fbd2b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
79f51b5
99fbd2b
 
 
9cb3fae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
99fbd2b
f9037f8
99fbd2b
9cb3fae
 
 
 
 
 
 
f9037f8
 
 
9cb3fae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
99fbd2b
 
9cb3fae
 
 
 
 
 
 
 
 
f9037f8
 
 
9cb3fae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
99fbd2b
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
from fastapi import FastAPI, Request
from fastapi.responses import StreamingResponse
from fastapi.middleware.cors import CORSMiddleware
from typing import List, Dict, Any, Optional
from pydantic import BaseModel
import asyncio
import httpx
import random
from config import cookies, headers, groqapi
from prompts import ChiplingPrompts
from groq import Groq
import json
from fastapi.responses import HTMLResponse
from fastapi.templating import Jinja2Templates
from pathlib import Path
from collections import Counter, defaultdict
from utils.logger import log_request

app = FastAPI()

# Add CORS middleware
app.add_middleware(
    CORSMiddleware,
    allow_origins=["*"],
    allow_credentials=True,
    allow_methods=["*"],
    allow_headers=["*"],
)

templates = Jinja2Templates(directory="templates")
LOG_FILE = Path("logs.json")

@app.get("/dashboard", response_class=HTMLResponse)
async def dashboard(request: Request, endpoint: str = None):
    try:
        with open("logs.json") as f:
            logs = json.load(f)
    except FileNotFoundError:
        logs = []

    # Filter logs
    if endpoint:
        logs = [log for log in logs if log["endpoint"] == endpoint]

    # Summary stats
    total_requests = len(logs)
    endpoint_counts = Counter(log["endpoint"] for log in logs)
    query_counts = Counter(log["query"] for log in logs)

    # Requests per date
    date_counts = defaultdict(int)
    for log in logs:
        date = log["timestamp"].split("T")[0]
        date_counts[date] += 1

    # Sort logs by timestamp (desc)
    logs_sorted = sorted(logs, key=lambda x: x["timestamp"], reverse=True)

    return templates.TemplateResponse("dashboard.html", {
        "request": request,
        "logs": logs_sorted[:100],  # show top 100
        "total_requests": total_requests,
        "endpoint_counts": dict(endpoint_counts),
        "query_counts": query_counts.most_common(5),
        "date_counts": dict(date_counts),
        "filter_endpoint": endpoint or "",
    })

# Define request model
class ChatRequest(BaseModel):
    message: str
    messages: List[Dict[Any, Any]]
    model: Optional[str] = "meta-llama/Llama-4-Maverick-17B-128E-Instruct-FP8"

client = Groq(api_key=groqapi)

async def generate(json_data: Dict[str, Any]):
    max_retries = 5
    for attempt in range(max_retries):
        async with httpx.AsyncClient(timeout=None) as client:
            try:
                request_ctx = client.stream(
                    "POST",
                    "https://api.together.ai/inference",
                    cookies=cookies,
                    headers=headers,
                    json=json_data
                )

                async with request_ctx as response:
                    if response.status_code == 200:
                        async for line in response.aiter_lines():
                            if line:
                                yield f"{line}\n"
                        return
                    elif response.status_code == 429:
                        if attempt < max_retries - 1:
                            await asyncio.sleep(0.5)
                            continue
                        yield "data: [Rate limited, max retries]\n\n"
                        return
                    else:
                        yield f"data: [Unexpected status code: {response.status_code}]\n\n"
                        return
            except Exception as e:
                yield f"data: [Connection error: {str(e)}]\n\n"
                return

    yield "data: [Max retries reached]\n\n"

def convert_to_groq_schema(messages: List[Dict[str, Any]]) -> List[Dict[str, str]]:
    converted = []
    for message in messages:
        role = message.get("role", "user")
        content = message.get("content")

        if isinstance(content, list):
            flattened = []
            for item in content:
                if isinstance(item, dict) and item.get("type") == "text":
                    flattened.append(item.get("text", ""))
            content = "\n".join(flattened)
        elif not isinstance(content, str):
            content = str(content)

        converted.append({"role": role, "content": content})
    return converted


async def groqgenerate(json_data: Dict[str, Any]):
    try:
        messages = convert_to_groq_schema(json_data["messages"])
        chunk_id = "groq-" + "".join(random.choices("0123456789abcdef", k=32))
        created = int(asyncio.get_event_loop().time())

        # Create streaming response
        stream = client.chat.completions.create(
            messages=messages,
            model="meta-llama/llama-4-scout-17b-16e-instruct",
            temperature=json_data.get("temperature", 0.7),
            max_completion_tokens=json_data.get("max_tokens", 1024),
            top_p=json_data.get("top_p", 1),
            stop=json_data.get("stop", None),
            stream=True,
        )

        total_tokens = 0

        # Use normal for-loop since stream is not async
        for chunk in stream:
            content = chunk.choices[0].delta.content
            if content:
                response = {
                    "id": chunk_id,
                    "object": "chat.completion.chunk",
                    "created": created,
                    "model": json_data.get("model", "llama-3.3-70b-versatile"),
                    "choices": [{
                        "index": 0,
                        "text": content,
                        "logprobs": None,
                        "finish_reason": None
                    }],
                    "usage": None
                }
                yield f"data: {json.dumps(response)}\n\n"
                total_tokens += 1

        final = {
            "id": chunk_id,
            "object": "chat.completion.chunk",
            "created": created,
            "model": json_data.get("model", "llama-3.3-70b-versatile"),
            "choices": [],
            "usage": {
                "prompt_tokens": len(messages),
                "completion_tokens": total_tokens,
                "total_tokens": len(messages) + total_tokens,
            }
        }
        yield f"data: {json.dumps(final)}\n\n"
        yield "data: [DONE]\n\n"

    except Exception as e:
        generate(json_data)



@app.get("/")
async def index():
    return {"status": "ok"}

@app.post("/chat")
async def chat(request: ChatRequest):
    current_messages = request.messages.copy()
    
    # Handle both single text or list content
    if request.messages and isinstance(request.messages[-1].get('content'), list):
        current_messages = request.messages
    else:
        current_messages.append({
            'content': [{
                'type': 'text',
                'text': request.message
            }],
            'role': 'user'
        })

    json_data = {
        'model': request.model,
        'max_tokens': None,
        'temperature': 0.7,
        'top_p': 0.7,
        'top_k': 50,
        'repetition_penalty': 1,
        'stream_tokens': True,
        'stop': ['<|eot_id|>', '<|eom_id|>'],
        'messages': current_messages,
        'stream': True,
    }

    selected_generator = random.choice([groqgenerate, generate])
    log_request("/chat", selected_generator.__name__)
    return StreamingResponse(selected_generator(json_data), media_type='text/event-stream')


@app.post("/generate-modules")
async def generate_modules(request: Request):
    data = await request.json()
    search_query = data.get("searchQuery")

    log_request("/generate-modules", search_query)


    if not search_query:
        return {"error": "searchQuery is required"}

    system_prompt = ChiplingPrompts.generateModules(search_query)

    current_messages = [
        {
            'role': 'system',
            'content': [{
                'type': 'text',
                'text': system_prompt
            }]
        },
        {
            'role': 'user',
            'content': [{
                'type': 'text',
                'text': search_query
            }]
        }
    ]

    json_data = {
        'model': "meta-llama/Llama-4-Maverick-17B-128E-Instruct-FP8",
        'max_tokens': None,
        'temperature': 0.7,
        'top_p': 0.7,
        'top_k': 50,
        'repetition_penalty': 1,
        'stream_tokens': True,
        'stop': ['<|eot_id|>', '<|eom_id|>'],
        'messages': current_messages,
        'stream': True,
    }
    selected_generator = random.choice([groqgenerate])
    return StreamingResponse(selected_generator(json_data), media_type='text/event-stream')


@app.post("/generate-topics")
async def generate_topics(request: Request):
    data = await request.json()
    search_query = data.get("searchQuery")

    if not search_query:
        return {"error": "searchQuery is required"}
    
    log_request("/generate-topics", search_query)


    system_prompt = ChiplingPrompts.generateTopics(search_query)

    current_messages = [
        {
            'role': 'system',
            'content': [{
                'type': 'text',
                'text': system_prompt
            }]
        },
        {
            'role': 'user',
            'content': [{
                'type': 'text',
                'text': search_query
            }]
        }
    ]

    json_data = {
        'model': "meta-llama/Llama-4-Maverick-17B-128E-Instruct-FP8",
        'max_tokens': None,
        'temperature': 0.7,
        'top_p': 0.7,
        'top_k': 50,
        'repetition_penalty': 1,
        'stream_tokens': True,
        'stop': ['<|eot_id|>', '<|eom_id|>'],
        'messages': current_messages,
        'stream': True,
    }

    selected_generator = random.choice([groqgenerate, generate])
    return StreamingResponse(selected_generator(json_data), media_type='text/event-stream')