Spaces:
Running
Running
File size: 5,178 Bytes
9cb3fae |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 |
from fastapi import FastAPI, Request
from fastapi.responses import StreamingResponse
from fastapi.middleware.cors import CORSMiddleware
from typing import List, Dict, Any, Optional
from pydantic import BaseModel
import asyncio
import httpx
from config import cookies, headers
from prompts import ChiplingPrompts
app = FastAPI()
# Add CORS middleware
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
# Define request model
class ChatRequest(BaseModel):
message: str
messages: List[Dict[Any, Any]]
model: Optional[str] = "meta-llama/Llama-4-Maverick-17B-128E-Instruct-FP8"
async def generate(json_data: Dict[str, Any]):
max_retries = 5
for attempt in range(max_retries):
async with httpx.AsyncClient(timeout=None) as client:
try:
request_ctx = client.stream(
"POST",
"https://api.together.ai/inference",
cookies=cookies,
headers=headers,
json=json_data
)
async with request_ctx as response:
if response.status_code == 200:
async for line in response.aiter_lines():
if line:
yield f"{line}\n"
return
elif response.status_code == 429:
if attempt < max_retries - 1:
await asyncio.sleep(0.5)
continue
yield "data: [Rate limited, max retries]\n\n"
return
else:
yield f"data: [Unexpected status code: {response.status_code}]\n\n"
return
except Exception as e:
yield f"data: [Connection error: {str(e)}]\n\n"
return
yield "data: [Max retries reached]\n\n"
@app.get("/")
async def index():
return {"status": "ok"}
@app.post("/chat")
async def chat(request: ChatRequest):
current_messages = request.messages.copy()
# Handle both single text or list content
if request.messages and isinstance(request.messages[-1].get('content'), list):
current_messages = request.messages
else:
current_messages.append({
'content': [{
'type': 'text',
'text': request.message
}],
'role': 'user'
})
json_data = {
'model': request.model,
'max_tokens': None,
'temperature': 0.7,
'top_p': 0.7,
'top_k': 50,
'repetition_penalty': 1,
'stream_tokens': True,
'stop': ['<|eot_id|>', '<|eom_id|>'],
'messages': current_messages,
'stream': True,
}
return StreamingResponse(generate(json_data), media_type='text/event-stream')
@app.post("/generate-modules")
async def generate_modules(request: Request):
data = await request.json()
search_query = data.get("searchQuery")
if not search_query:
return {"error": "searchQuery is required"}
system_prompt = ChiplingPrompts.generateModules(search_query)
current_messages = [
{
'role': 'system',
'content': [{
'type': 'text',
'text': system_prompt
}]
},
{
'role': 'user',
'content': [{
'type': 'text',
'text': search_query
}]
}
]
json_data = {
'model': "meta-llama/Llama-4-Maverick-17B-128E-Instruct-FP8",
'max_tokens': None,
'temperature': 0.7,
'top_p': 0.7,
'top_k': 50,
'repetition_penalty': 1,
'stream_tokens': True,
'stop': ['<|eot_id|>', '<|eom_id|>'],
'messages': current_messages,
'stream': True,
}
return StreamingResponse(generate(json_data), media_type='text/event-stream')
@app.post("/generate-topics")
async def generate_topics(request: Request):
data = await request.json()
search_query = data.get("searchQuery")
if not search_query:
return {"error": "searchQuery is required"}
system_prompt = ChiplingPrompts.generateTopics(search_query)
current_messages = [
{
'role': 'system',
'content': [{
'type': 'text',
'text': system_prompt
}]
},
{
'role': 'user',
'content': [{
'type': 'text',
'text': search_query
}]
}
]
json_data = {
'model': "meta-llama/Llama-4-Maverick-17B-128E-Instruct-FP8",
'max_tokens': None,
'temperature': 0.7,
'top_p': 0.7,
'top_k': 50,
'repetition_penalty': 1,
'stream_tokens': True,
'stop': ['<|eot_id|>', '<|eom_id|>'],
'messages': current_messages,
'stream': True,
}
return StreamingResponse(generate(json_data), media_type='text/event-stream') |