File size: 5,178 Bytes
9cb3fae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
from fastapi import FastAPI, Request
from fastapi.responses import StreamingResponse
from fastapi.middleware.cors import CORSMiddleware
from typing import List, Dict, Any, Optional
from pydantic import BaseModel
import asyncio
import httpx

from config import cookies, headers
from prompts import ChiplingPrompts

app = FastAPI()

# Add CORS middleware
app.add_middleware(
    CORSMiddleware,
    allow_origins=["*"],
    allow_credentials=True,
    allow_methods=["*"],
    allow_headers=["*"],
)

# Define request model
class ChatRequest(BaseModel):
    message: str
    messages: List[Dict[Any, Any]]
    model: Optional[str] = "meta-llama/Llama-4-Maverick-17B-128E-Instruct-FP8"

async def generate(json_data: Dict[str, Any]):
    max_retries = 5
    for attempt in range(max_retries):
        async with httpx.AsyncClient(timeout=None) as client:
            try:
                request_ctx = client.stream(
                    "POST",
                    "https://api.together.ai/inference",
                    cookies=cookies,
                    headers=headers,
                    json=json_data
                )

                async with request_ctx as response:
                    if response.status_code == 200:
                        async for line in response.aiter_lines():
                            if line:
                                yield f"{line}\n"
                        return
                    elif response.status_code == 429:
                        if attempt < max_retries - 1:
                            await asyncio.sleep(0.5)
                            continue
                        yield "data: [Rate limited, max retries]\n\n"
                        return
                    else:
                        yield f"data: [Unexpected status code: {response.status_code}]\n\n"
                        return
            except Exception as e:
                yield f"data: [Connection error: {str(e)}]\n\n"
                return

    yield "data: [Max retries reached]\n\n"

@app.get("/")
async def index():
    return {"status": "ok"}

@app.post("/chat")
async def chat(request: ChatRequest):
    current_messages = request.messages.copy()
    
    # Handle both single text or list content
    if request.messages and isinstance(request.messages[-1].get('content'), list):
        current_messages = request.messages
    else:
        current_messages.append({
            'content': [{
                'type': 'text',
                'text': request.message
            }],
            'role': 'user'
        })

    json_data = {
        'model': request.model,
        'max_tokens': None,
        'temperature': 0.7,
        'top_p': 0.7,
        'top_k': 50,
        'repetition_penalty': 1,
        'stream_tokens': True,
        'stop': ['<|eot_id|>', '<|eom_id|>'],
        'messages': current_messages,
        'stream': True,
    }

    return StreamingResponse(generate(json_data), media_type='text/event-stream')


@app.post("/generate-modules")
async def generate_modules(request: Request):
    data = await request.json()
    search_query = data.get("searchQuery")

    if not search_query:
        return {"error": "searchQuery is required"}

    system_prompt = ChiplingPrompts.generateModules(search_query)

    current_messages = [
        {
            'role': 'system',
            'content': [{
                'type': 'text',
                'text': system_prompt
            }]
        },
        {
            'role': 'user',
            'content': [{
                'type': 'text',
                'text': search_query
            }]
        }
    ]

    json_data = {
        'model': "meta-llama/Llama-4-Maverick-17B-128E-Instruct-FP8",
        'max_tokens': None,
        'temperature': 0.7,
        'top_p': 0.7,
        'top_k': 50,
        'repetition_penalty': 1,
        'stream_tokens': True,
        'stop': ['<|eot_id|>', '<|eom_id|>'],
        'messages': current_messages,
        'stream': True,
    }

    return StreamingResponse(generate(json_data), media_type='text/event-stream')


@app.post("/generate-topics")
async def generate_topics(request: Request):
    data = await request.json()
    search_query = data.get("searchQuery")

    if not search_query:
        return {"error": "searchQuery is required"}

    system_prompt = ChiplingPrompts.generateTopics(search_query)

    current_messages = [
        {
            'role': 'system',
            'content': [{
                'type': 'text',
                'text': system_prompt
            }]
        },
        {
            'role': 'user',
            'content': [{
                'type': 'text',
                'text': search_query
            }]
        }
    ]

    json_data = {
        'model': "meta-llama/Llama-4-Maverick-17B-128E-Instruct-FP8",
        'max_tokens': None,
        'temperature': 0.7,
        'top_p': 0.7,
        'top_k': 50,
        'repetition_penalty': 1,
        'stream_tokens': True,
        'stop': ['<|eot_id|>', '<|eom_id|>'],
        'messages': current_messages,
        'stream': True,
    }

    return StreamingResponse(generate(json_data), media_type='text/event-stream')