Commit
·
e4d89ca
1
Parent(s):
b1337d4
Update app.py
Browse files
app.py
CHANGED
@@ -1,319 +1,1178 @@
|
|
1 |
-
import gradio as gr
|
2 |
-
import base64
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
.
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
background
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
}
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
/*
|
110 |
-
.
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
-
|
199 |
-
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
|
223 |
-
|
224 |
-
|
225 |
-
|
226 |
-
|
227 |
-
|
228 |
-
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
-
|
239 |
-
-
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
|
244 |
-
|
245 |
-
|
246 |
-
|
247 |
-
|
248 |
-
|
249 |
-
|
250 |
-
|
251 |
-
|
252 |
-
|
253 |
-
|
254 |
-
|
255 |
-
|
256 |
-
|
257 |
-
|
258 |
-
|
259 |
-
|
260 |
-
|
261 |
-
|
262 |
-
|
263 |
-
|
264 |
-
|
265 |
-
|
266 |
-
|
267 |
-
|
268 |
-
|
269 |
-
|
270 |
-
|
271 |
-
|
272 |
-
|
273 |
-
|
274 |
-
|
275 |
-
|
276 |
-
|
277 |
-
|
278 |
-
|
279 |
-
|
280 |
-
|
281 |
-
|
282 |
-
-
|
283 |
-
-
|
284 |
-
|
285 |
-
|
286 |
-
|
287 |
-
|
288 |
-
|
289 |
-
|
290 |
-
|
291 |
-
|
292 |
-
|
293 |
-
|
294 |
-
|
295 |
-
|
296 |
-
|
297 |
-
|
298 |
-
|
299 |
-
|
300 |
-
|
301 |
-
|
302 |
-
|
303 |
-
|
304 |
-
|
305 |
-
|
306 |
-
|
307 |
-
|
308 |
-
|
309 |
-
|
310 |
-
|
311 |
-
|
312 |
-
|
313 |
-
|
314 |
-
|
315 |
-
|
316 |
-
|
317 |
-
|
318 |
-
|
319 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import base64
|
3 |
+
import os
|
4 |
+
|
5 |
+
# --- Helper Functions ---
|
6 |
+
def file_to_data_uri(filepath, mime_type="application/pdf"):
|
7 |
+
with open(filepath, "rb") as f:
|
8 |
+
data = f.read()
|
9 |
+
b64 = base64.b64encode(data).decode("utf-8")
|
10 |
+
return f"data:{mime_type};base64,{b64}"
|
11 |
+
|
12 |
+
|
13 |
+
# --- Navigation Functions ---
|
14 |
+
def show_data_analytics():
|
15 |
+
return gr.update(visible=False), gr.update(visible=True), gr.update(visible=False), gr.update(visible=False)
|
16 |
+
|
17 |
+
def show_machine_learning():
|
18 |
+
return gr.update(visible=False), gr.update(visible=False), gr.update(visible=True), gr.update(visible=False)
|
19 |
+
|
20 |
+
def show_computer_vision():
|
21 |
+
return gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=True)
|
22 |
+
|
23 |
+
def go_home():
|
24 |
+
return gr.update(visible=True), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
|
25 |
+
|
26 |
+
# --- Icons (SVG) ---
|
27 |
+
data_analytics_icon = """<svg viewBox="0 0 24 24" fill="none" stroke="currentColor" stroke-width="2" stroke-linecap="round" stroke-linejoin="round"><path d="M21 15a2 2 0 0 1-2 2H7l-4 4V5a2 2 0 0 1 2-2h14a2 2 0 0 1 2 2z"></path><path d="M8 10h.01"></path><path d="M12 10h.01"></path><path d="M16 10h.01"></path></svg>"""
|
28 |
+
machine_learning_icon = """<svg viewBox="0 0 24 24" fill="none" stroke="currentColor" stroke-width="2" stroke-linecap="round" stroke-linejoin="round"><polyline points="22 12 18 12 15 21 9 3 6 12 2 12"></polyline></svg>"""
|
29 |
+
computer_vision_icon = """<svg viewBox="0 0 24 24" fill="none" stroke="currentColor" stroke-width="2" stroke-linecap="round" stroke-linejoin="round"><path d="M23 19a2 2 0 0 1-2 2H3a2 2 0 0 1-2-2V8a2 2 0 0 1 2-2h4l2-3h6l2 3h4a2 2 0 0 1 2 2z"></path><circle cx="12" cy="13" r="4"></circle></svg>"""
|
30 |
+
home_icon = """<svg viewBox="0 0 24 24" fill="none" stroke="currentColor" stroke-width="2" stroke-linecap="round" stroke-linejoin="round"><path d="M3 9l9-7 9 7v11a2 2 0 0 1-2 2H5a2 2 0 0 1-2-2z"></path><polyline points="9 22 9 12 15 12 15 22"></polyline></svg>"""
|
31 |
+
linkedin_icon = """<svg viewBox="0 0 24 24" fill="none" stroke="currentColor" stroke-width="2" stroke-linecap="round" stroke-linejoin="round"><path d="M16 8a6 6 0 0 1 6 6v7h-4v-7a2 2 0 0 0-2-2 2 2 0 0 0-2 2v7h-4v-7a6 6 0 0 1 6-6z"></path><rect x="2" y="9" width="4" height="12"></rect><circle cx="4" cy="4" r="2"></circle></svg>"""
|
32 |
+
github_icon = """<svg viewBox="0 0 24 24" fill="none" stroke="currentColor" stroke-width="2" stroke-linecap="round" stroke-linejoin="round"><path d="M9 19c-5 1.5-5-2.5-7-3m14 6v-3.87a3.37 3.37 0 0 0-.94-2.61c3.14-.35 6.44-1.54 6.44-7A5.44 5.44 0 0 0 20 4.77 5.07 5.07 0 0 0 19.91 1S18.73.65 16 2.48a13.38 13.38 0 0 0-7 0C6.27.65 5.09 1 5.09 1A5.07 5.07 0 0 0 5 4.77a5.44 5.44 0 0 0-1.5 3.78c0 5.42 3.3 6.61 6.44 7A3.37 3.37 0 0 0 9 18.13V22"></path></svg>"""
|
33 |
+
mail_icon = """<svg viewBox="0 0 24 24" fill="none" stroke="currentColor" stroke-width="2" stroke-linecap="round" stroke-linejoin="round"><path d="M4 4h16c1.1 0 2 .9 2 2v12c0 1.1-.9 2-2 2H4c-1.1 0-2-.9-2-2V6c0-1.1.9-2 2-2z"></path><polyline points="22,6 12,13 2,6"></polyline></svg>"""
|
34 |
+
link_icon = """<svg viewBox="0 0 24 24" fill="none" stroke="currentColor" stroke-width="2" stroke-linecap="round" stroke-linejoin="round"><path d="M10 13a5 5 0 0 0 7.54.54l3-3a5 5 0 0 0-7.07-7.07l-1.72 1.71"></path><path d="M14 11a5 5 0 0 0-7.54-.54l-3 3a5 5 0 0 0 7.07 7.07l1.71-1.71"></path></svg>"""
|
35 |
+
document_icon = """<svg viewBox="0 0 24 24" fill="none" stroke="currentColor" stroke-width="2" stroke-linecap="round" stroke-linejoin="round"><path d="M14 2H6a2 2 0 0 0-2 2v16a2 2 0 0 0 2 2h12a2 2 0 0 0 2-2V8z"></path><polyline points="14 2 14 8 20 8"></polyline><line x1="16" y1="13" x2="8" y2="13"></line><line x1="16" y1="17" x2="8" y2="17"></line><line x1="10" y1="9" x2="8" y2="9"></line></svg>"""
|
36 |
+
|
37 |
+
# --- Function to encode image ---
|
38 |
+
def image_to_data_uri(filepath, mime_type="image/jpeg"):
|
39 |
+
with open(filepath, "rb") as f:
|
40 |
+
data = f.read()
|
41 |
+
b64 = base64.b64encode(data).decode("utf-8")
|
42 |
+
return f"data:{mime_type};base64,{b64}"
|
43 |
+
|
44 |
+
# --- CSS ---
|
45 |
+
portfolio_css = """
|
46 |
+
@import url('https://fonts.googleapis.com/css2?family=Poppins:wght@300;400;500;600;700&family=Montserrat:wght@700;800&display=swap');
|
47 |
+
|
48 |
+
:root {
|
49 |
+
--primary-da: #8a2be2;
|
50 |
+
--secondary-da: #2575fc;
|
51 |
+
--primary-ml: #00b4db;
|
52 |
+
--secondary-ml: #0083b0;
|
53 |
+
--primary-cv: #ff4d7e;
|
54 |
+
--secondary-cv: #fd3e58;
|
55 |
+
--dark-bg: #0f1118;
|
56 |
+
--card-bg: #1a1d29;
|
57 |
+
--text-primary: #ffffff;
|
58 |
+
--text-secondary: #e0e0e0;
|
59 |
+
--text-muted: #a0a0a0;
|
60 |
+
--shadow-sm: 0 4px 6px rgba(0, 0, 0, 0.1);
|
61 |
+
--shadow-md: 0 8px 16px rgba(0, 0, 0, 0.2);
|
62 |
+
--shadow-lg: 0 12px 24px rgba(0, 0, 0, 0.2);
|
63 |
+
--border-radius-sm: 8px;
|
64 |
+
--border-radius-md: 12px;
|
65 |
+
--border-radius-lg: 20px;
|
66 |
+
--transition-fast: 0.2s ease;
|
67 |
+
--transition-med: 0.3s ease;
|
68 |
+
--transition-slow: 0.5s ease;
|
69 |
+
}
|
70 |
+
|
71 |
+
body {
|
72 |
+
font-family: 'Poppins', sans-serif;
|
73 |
+
background: var(--dark-bg);
|
74 |
+
background-image:
|
75 |
+
radial-gradient(circle at 25% 25%, rgba(53, 53, 113, 0.05) 0%, transparent 50%),
|
76 |
+
radial-gradient(circle at 75% 75%, rgba(113, 53, 53, 0.05) 0%, transparent 50%);
|
77 |
+
color: var(--text-primary);
|
78 |
+
margin: 0;
|
79 |
+
padding: 0;
|
80 |
+
overflow-x: hidden;
|
81 |
+
}
|
82 |
+
|
83 |
+
.gr-container {
|
84 |
+
max-width: 1200px;
|
85 |
+
margin: 0 auto;
|
86 |
+
padding: 20px;
|
87 |
+
}
|
88 |
+
|
89 |
+
/* Scrollbar styling */
|
90 |
+
::-webkit-scrollbar {
|
91 |
+
width: 8px;
|
92 |
+
height: 8px;
|
93 |
+
}
|
94 |
+
|
95 |
+
::-webkit-scrollbar-track {
|
96 |
+
background: rgba(255, 255, 255, 0.05);
|
97 |
+
border-radius: 4px;
|
98 |
+
}
|
99 |
+
|
100 |
+
::-webkit-scrollbar-thumb {
|
101 |
+
background: rgba(255, 255, 255, 0.2);
|
102 |
+
border-radius: 4px;
|
103 |
+
}
|
104 |
+
|
105 |
+
::-webkit-scrollbar-thumb:hover {
|
106 |
+
background: rgba(255, 255, 255, 0.3);
|
107 |
+
}
|
108 |
+
|
109 |
+
/* Landing section */
|
110 |
+
.landing-section {
|
111 |
+
text-align: center;
|
112 |
+
margin-bottom: 60px;
|
113 |
+
padding: 40px 20px;
|
114 |
+
position: relative;
|
115 |
+
}
|
116 |
+
|
117 |
+
.landing-section:before {
|
118 |
+
content: '';
|
119 |
+
position: absolute;
|
120 |
+
top: 0;
|
121 |
+
left: 0;
|
122 |
+
right: 0;
|
123 |
+
height: 500px;
|
124 |
+
background: linear-gradient(180deg, rgba(0,0,0,0.7) 0%, transparent 100%);
|
125 |
+
z-index: -1;
|
126 |
+
}
|
127 |
+
|
128 |
+
.landing-section h1, .landing-section h2 {
|
129 |
+
color: var(--text-primary) !important;
|
130 |
+
margin-top: 0;
|
131 |
+
}
|
132 |
+
|
133 |
+
.landing-section h1 {
|
134 |
+
font-family: 'Montserrat', sans-serif;
|
135 |
+
font-size: 3.2rem;
|
136 |
+
font-weight: 800;
|
137 |
+
margin-bottom: 0.5rem;
|
138 |
+
background: linear-gradient(90deg, var(--primary-da), var(--primary-ml), var(--primary-cv));
|
139 |
+
-webkit-background-clip: text;
|
140 |
+
background-clip: text;
|
141 |
+
color: transparent !important;
|
142 |
+
letter-spacing: -0.5px;
|
143 |
+
}
|
144 |
+
|
145 |
+
.landing-section h2 {
|
146 |
+
font-size: 2rem;
|
147 |
+
font-weight: 600;
|
148 |
+
margin-bottom: 1.5rem;
|
149 |
+
}
|
150 |
+
|
151 |
+
.profile-container {
|
152 |
+
margin: 30px auto;
|
153 |
+
display: flex;
|
154 |
+
align-items: center;
|
155 |
+
justify-content: center;
|
156 |
+
flex-direction: column;
|
157 |
+
}
|
158 |
+
|
159 |
+
.profile-pic {
|
160 |
+
width: 180px;
|
161 |
+
height: 180px;
|
162 |
+
border-radius: 50%;
|
163 |
+
object-fit: cover;
|
164 |
+
border: 4px solid rgba(255, 255, 255, 0.2);
|
165 |
+
box-shadow: var(--shadow-md);
|
166 |
+
margin-bottom: 20px;
|
167 |
+
position: relative;
|
168 |
+
background: linear-gradient(45deg, var(--primary-da), var(--primary-ml), var(--primary-cv));
|
169 |
+
padding: 4px;
|
170 |
+
}
|
171 |
+
|
172 |
+
.profile-pic img {
|
173 |
+
border-radius: 50%;
|
174 |
+
width: 100%;
|
175 |
+
height: 100%;
|
176 |
+
object-fit: cover;
|
177 |
+
}
|
178 |
+
|
179 |
+
.name-text {
|
180 |
+
font-size: 2.6rem;
|
181 |
+
font-weight: 700;
|
182 |
+
margin-top: 10px;
|
183 |
+
margin-bottom: 10px;
|
184 |
+
}
|
185 |
+
|
186 |
+
@keyframes float {
|
187 |
+
0% { transform: translateY(0px) }
|
188 |
+
50% { transform: translateY(-10px) }
|
189 |
+
100% { transform: translateY(0px) }
|
190 |
+
}
|
191 |
+
|
192 |
+
@keyframes pulse {
|
193 |
+
0% { transform: scale(1); }
|
194 |
+
50% { transform: scale(1.05); }
|
195 |
+
100% { transform: scale(1); }
|
196 |
+
}
|
197 |
+
|
198 |
+
.about-text {
|
199 |
+
max-width: 800px;
|
200 |
+
margin: 0 auto 40px;
|
201 |
+
font-size: 1.25rem;
|
202 |
+
line-height: 1.6;
|
203 |
+
color: var(--text-secondary);
|
204 |
+
}
|
205 |
+
|
206 |
+
.skills-container {
|
207 |
+
margin-top: 20px;
|
208 |
+
display: flex;
|
209 |
+
flex-wrap: wrap;
|
210 |
+
justify-content: center;
|
211 |
+
gap: 10px;
|
212 |
+
margin-bottom: 40px;
|
213 |
+
}
|
214 |
+
|
215 |
+
.skill-pill {
|
216 |
+
background: rgba(255, 255, 255, 0.1);
|
217 |
+
padding: 8px 16px;
|
218 |
+
border-radius: 30px;
|
219 |
+
font-size: 0.9rem;
|
220 |
+
font-weight: 500;
|
221 |
+
color: var(--text-secondary);
|
222 |
+
}
|
223 |
+
|
224 |
+
.social-links {
|
225 |
+
display: flex;
|
226 |
+
justify-content: center;
|
227 |
+
gap: 20px;
|
228 |
+
margin: 30px 0;
|
229 |
+
}
|
230 |
+
|
231 |
+
.social-button {
|
232 |
+
background: rgba(255, 255, 255, 0.1);
|
233 |
+
border: none;
|
234 |
+
border-radius: 50%;
|
235 |
+
width: 50px;
|
236 |
+
height: 50px;
|
237 |
+
display: flex;
|
238 |
+
align-items: center;
|
239 |
+
justify-content: center;
|
240 |
+
transition: all var(--transition-med);
|
241 |
+
color: var(--text-primary);
|
242 |
+
font-size: 1.2rem;
|
243 |
+
box-shadow: var(--shadow-sm);
|
244 |
+
}
|
245 |
+
|
246 |
+
.social-button:hover {
|
247 |
+
transform: translateY(-5px);
|
248 |
+
background: rgba(255, 255, 255, 0.2);
|
249 |
+
box-shadow: var(--shadow-md);
|
250 |
+
}
|
251 |
+
|
252 |
+
.social-linkedin:hover { background: #0077b5; }
|
253 |
+
.social-github:hover { background: #333; }
|
254 |
+
.social-email:hover { background: #ea4335; }
|
255 |
+
|
256 |
+
.social-button svg {
|
257 |
+
width: 24px;
|
258 |
+
height: 24px;
|
259 |
+
}
|
260 |
+
|
261 |
+
/* Card styling */
|
262 |
+
.cards-grid {
|
263 |
+
display: grid;
|
264 |
+
grid-template-columns: repeat(auto-fit, minmax(300px, 1fr));
|
265 |
+
gap: 30px;
|
266 |
+
margin: 40px 0;
|
267 |
+
}
|
268 |
+
|
269 |
+
.card-container {
|
270 |
+
position: relative; /* Important for button positioning */
|
271 |
+
margin-bottom: 20px;
|
272 |
+
height: 100%;
|
273 |
+
}
|
274 |
+
|
275 |
+
.card-container.da:before {
|
276 |
+
content: '';
|
277 |
+
position: absolute;
|
278 |
+
top: 0;
|
279 |
+
left: 0;
|
280 |
+
right: 0;
|
281 |
+
height: 6px;
|
282 |
+
background: linear-gradient(90deg, var(--primary-da), var(--secondary-da));
|
283 |
+
z-index: 5;
|
284 |
+
border-radius: var(--border-radius-md) var(--border-radius-md) 0 0;
|
285 |
+
}
|
286 |
+
|
287 |
+
.card-container.ml:before {
|
288 |
+
content: '';
|
289 |
+
position: absolute;
|
290 |
+
top: 0;
|
291 |
+
left: 0;
|
292 |
+
right: 0;
|
293 |
+
height: 6px;
|
294 |
+
background: linear-gradient(90deg, var(--primary-ml), var(--secondary-ml));
|
295 |
+
z-index: 5;
|
296 |
+
transition: all var(--transition-med);
|
297 |
+
border-radius: var(--border-radius-md) var(--border-radius-md) 0 0;
|
298 |
+
}
|
299 |
+
|
300 |
+
.card-container.cv:before {
|
301 |
+
content: '';
|
302 |
+
position: absolute;
|
303 |
+
top: 0;
|
304 |
+
left: 0;
|
305 |
+
right: 0;
|
306 |
+
height: 6px;
|
307 |
+
background: linear-gradient(90deg, var(--primary-cv), var(--secondary-cv));
|
308 |
+
z-index: 5;
|
309 |
+
border-radius: var(--border-radius-md) var(--border-radius-md) 0 0;
|
310 |
+
}
|
311 |
+
|
312 |
+
.card-content {
|
313 |
+
padding: 30px;
|
314 |
+
min-height: 200px;
|
315 |
+
display: flex;
|
316 |
+
flex-direction: column;
|
317 |
+
align-items: center;
|
318 |
+
justify-content: center;
|
319 |
+
font-size: 26px;
|
320 |
+
font-weight: 700;
|
321 |
+
position: relative;
|
322 |
+
z-index: 2;
|
323 |
+
transition: all var(--transition-med);
|
324 |
+
}
|
325 |
+
|
326 |
+
.card-content svg {
|
327 |
+
width: 60px;
|
328 |
+
height: 60px;
|
329 |
+
margin-bottom: 20px;
|
330 |
+
opacity: 0.9;
|
331 |
+
transition: all var(--transition-med);
|
332 |
+
}
|
333 |
+
|
334 |
+
.card-inner {
|
335 |
+
transition: transform var(--transition-med), box-shadow var(--transition-med), background-color var(--transition-med);
|
336 |
+
text-align: center;
|
337 |
+
border-radius: var(--border-radius-md);
|
338 |
+
background: var(--card-bg);
|
339 |
+
overflow: hidden;
|
340 |
+
box-shadow: var(--shadow-md);
|
341 |
+
height: 100%;
|
342 |
+
cursor: pointer; /* Indicates the card is clickable */
|
343 |
+
position: relative; /* Ensure child elements are positioned relative to the card */
|
344 |
+
}
|
345 |
+
|
346 |
+
.card-inner:hover {
|
347 |
+
transform: translateY(-10px) scale(1.05); /* Adds a slight zoom effect */
|
348 |
+
box-shadow: var(--shadow-lg); /* Increases shadow for emphasis */
|
349 |
+
background: rgba(255, 255, 255, 0.1); /* Subtle background change */
|
350 |
+
border: 2px solid var(--primary-da); /* Optional: Add a border to emphasize hover */
|
351 |
+
}
|
352 |
+
|
353 |
+
.card-inner:hover .card-content svg {
|
354 |
+
transform: scale(1.1); /* Slightly enlarges the icon */
|
355 |
+
opacity: 1;
|
356 |
+
}
|
357 |
+
|
358 |
+
.card-inner:hover .card-description {
|
359 |
+
color: var(--text-primary); /* Optional: changes text color for emphasis */
|
360 |
+
}
|
361 |
+
|
362 |
+
/* Add a subtle glow effect */
|
363 |
+
.card-inner:hover:before {
|
364 |
+
content: '';
|
365 |
+
position: absolute;
|
366 |
+
top: 0;
|
367 |
+
left: 0;
|
368 |
+
right: 0;
|
369 |
+
bottom: 0;
|
370 |
+
border-radius: var(--border-radius-md);
|
371 |
+
box-shadow: 0 0 15px rgba(255, 255, 255, 0.3);
|
372 |
+
z-index: -1;
|
373 |
+
}
|
374 |
+
|
375 |
+
.card-description {
|
376 |
+
padding: 0 20px 20px;
|
377 |
+
color: var(--text-secondary);
|
378 |
+
font-size: 1.1rem;
|
379 |
+
line-height: 1.5;
|
380 |
+
}
|
381 |
+
|
382 |
+
/* Card button styling - crucial for making cards clickable */
|
383 |
+
.card-button {
|
384 |
+
position: absolute !important;
|
385 |
+
top: 0 !important;
|
386 |
+
left: 0 !important;
|
387 |
+
width: 100% !important;
|
388 |
+
height: 100% !important;
|
389 |
+
opacity: 0 !important;
|
390 |
+
z-index: 10 !important;
|
391 |
+
cursor: pointer !important;
|
392 |
+
margin: 0 !important;
|
393 |
+
padding: 0 !important;
|
394 |
+
border: none !important;
|
395 |
+
transform: scale(1.05) !important;
|
396 |
+
transition: transform 0.2s ease !important;
|
397 |
+
background: none !important;
|
398 |
+
}
|
399 |
+
|
400 |
+
/* Section styling */
|
401 |
+
.section-container {
|
402 |
+
padding: 40px 20px;
|
403 |
+
position: relative;
|
404 |
+
}
|
405 |
+
|
406 |
+
.section-container:before {
|
407 |
+
content: '';
|
408 |
+
position: absolute;
|
409 |
+
top: 0;
|
410 |
+
left: 0;
|
411 |
+
width: 100%;
|
412 |
+
height: 300px;
|
413 |
+
background: radial-gradient(ellipse at top, rgba(255,255,255,0.05) 0%, transparent 70%);
|
414 |
+
z-index: 0;
|
415 |
+
}
|
416 |
+
|
417 |
+
.da-section h1.section-heading {
|
418 |
+
color: var(--primary-da);
|
419 |
+
position: relative;
|
420 |
+
display: inline-block;
|
421 |
+
}
|
422 |
+
|
423 |
+
.ml-section h1.section-heading {
|
424 |
+
color: var(--primary-ml);
|
425 |
+
position: relative;
|
426 |
+
display: inline-block;
|
427 |
+
}
|
428 |
+
|
429 |
+
.cv-section h1.section-heading {
|
430 |
+
color: var(--primary-cv);
|
431 |
+
position: relative;
|
432 |
+
display: inline-block;
|
433 |
+
}
|
434 |
+
|
435 |
+
.section-heading:after {
|
436 |
+
content: '';
|
437 |
+
position: absolute;
|
438 |
+
bottom: -10px;
|
439 |
+
left: 0;
|
440 |
+
width: 100%;
|
441 |
+
height: 3px;
|
442 |
+
border-radius: 3px;
|
443 |
+
}
|
444 |
+
|
445 |
+
.da-section .section-heading:after { background: var(--primary-da); }
|
446 |
+
.ml-section .section-heading:after { background: var(--primary-ml); }
|
447 |
+
.cv-section .section-heading:after { background: var(--primary-cv); }
|
448 |
+
|
449 |
+
/* Subheadings color-coded */
|
450 |
+
.section-subheading.da { color: var(--primary-da); }
|
451 |
+
.section-subheading.ml { color: var(--primary-ml); }
|
452 |
+
.section-subheading.cv { color: var(--primary-cv); }
|
453 |
+
|
454 |
+
/* Back buttons */
|
455 |
+
.back-button {
|
456 |
+
border: none;
|
457 |
+
border-radius: var(--border-radius-lg);
|
458 |
+
padding: 10px 20px;
|
459 |
+
font-size: 0.95rem;
|
460 |
+
font-weight: 600;
|
461 |
+
cursor: pointer;
|
462 |
+
transition: transform var(--transition-fast), box-shadow var(--transition-fast);
|
463 |
+
margin-bottom: 30px;
|
464 |
+
display: flex;
|
465 |
+
align-items: center;
|
466 |
+
gap: 8px;
|
467 |
+
}
|
468 |
+
|
469 |
+
.back-button:hover {
|
470 |
+
transform: translateY(-3px);
|
471 |
+
box-shadow: var(--shadow-md);
|
472 |
+
}
|
473 |
+
|
474 |
+
.back-button-da {
|
475 |
+
background: linear-gradient(45deg, var(--primary-da), var(--secondary-da));
|
476 |
+
color: #fff;
|
477 |
+
}
|
478 |
+
|
479 |
+
.back-button-ml {
|
480 |
+
background: linear-gradient(45deg, var(--primary-ml), var(--secondary-ml));
|
481 |
+
color: #fff;
|
482 |
+
}
|
483 |
+
|
484 |
+
.back-button-cv {
|
485 |
+
background: linear-gradient(45deg, var(--primary-cv), var(--secondary-cv));
|
486 |
+
color: #fff;
|
487 |
+
}
|
488 |
+
|
489 |
+
.back-button svg {
|
490 |
+
width: 20px;
|
491 |
+
height: 20px;
|
492 |
+
}
|
493 |
+
|
494 |
+
/* Contact form */
|
495 |
+
.contact-container {
|
496 |
+
background: var(--card-bg);
|
497 |
+
border-radius: var(--border-radius-md);
|
498 |
+
padding: 30px;
|
499 |
+
max-width: 600px;
|
500 |
+
margin: 0 auto;
|
501 |
+
box-shadow: var(--shadow-md);
|
502 |
+
}
|
503 |
+
|
504 |
+
.hire-me-button {
|
505 |
+
background: linear-gradient(45deg, var(--primary-da), var(--primary-cv));
|
506 |
+
color: white;
|
507 |
+
border: none;
|
508 |
+
border-radius: var(--border-radius-lg);
|
509 |
+
padding: 12px 25px;
|
510 |
+
font-size: 1rem;
|
511 |
+
font-weight: 600;
|
512 |
+
cursor: pointer;
|
513 |
+
transition: all var(--transition-med);
|
514 |
+
margin-top: 20px;
|
515 |
+
box-shadow: var(--shadow-sm);
|
516 |
+
display: inline-block;
|
517 |
+
text-decoration: none;
|
518 |
+
}
|
519 |
+
|
520 |
+
.hire-me-button:hover {
|
521 |
+
transform: translateY(-3px);
|
522 |
+
box-shadow: var(--shadow-md);
|
523 |
+
filter: brightness(1.1);
|
524 |
+
}
|
525 |
+
|
526 |
+
/* Project cards */
|
527 |
+
.project-card {
|
528 |
+
background: var(--card-bg);
|
529 |
+
border-radius: var(--border-radius-md);
|
530 |
+
padding: 25px;
|
531 |
+
margin-bottom: 20px;
|
532 |
+
box-shadow: var(--shadow-sm);
|
533 |
+
transition: all var(--transition-med);
|
534 |
+
border-left: 4px solid transparent;
|
535 |
+
}
|
536 |
+
|
537 |
+
.da-section .project-card { border-left-color: var(--primary-da); }
|
538 |
+
.ml-section .project-card { border-left-color: var(--primary-ml); }
|
539 |
+
.cv-section .project-card { border-left-color: var(--primary-cv); }
|
540 |
+
|
541 |
+
.project-card:hover {
|
542 |
+
transform: translateX(5px);
|
543 |
+
box-shadow: var(--shadow-md);
|
544 |
+
}
|
545 |
+
|
546 |
+
.project-title {
|
547 |
+
font-size: 1.3rem;
|
548 |
+
font-weight: 600;
|
549 |
+
margin-bottom: 10px;
|
550 |
+
display: flex;
|
551 |
+
align-items: center;
|
552 |
+
justify-content: space-between;
|
553 |
+
}
|
554 |
+
|
555 |
+
.project-title-text {
|
556 |
+
flex: 1;
|
557 |
+
}
|
558 |
+
|
559 |
+
.project-link {
|
560 |
+
color: var(--text-secondary);
|
561 |
+
transition: all var(--transition-med);
|
562 |
+
text-decoration: none;
|
563 |
+
display: inline-flex;
|
564 |
+
align-items: center;
|
565 |
+
margin-left: 10px;
|
566 |
+
}
|
567 |
+
|
568 |
+
.project-link svg {
|
569 |
+
width: 16px;
|
570 |
+
height: 16px;
|
571 |
+
margin-right: 5px;
|
572 |
+
}
|
573 |
+
|
574 |
+
.da-section .project-title-text { color: var(--primary-da); }
|
575 |
+
.ml-section .project-title-text { color: var(--primary-ml); }
|
576 |
+
.cv-section .project-title-text { color: var(--primary-cv); }
|
577 |
+
|
578 |
+
.da-section .project-link:hover { color: var(--primary-da); }
|
579 |
+
.ml-section .project-link:hover { color: var(--primary-ml); }
|
580 |
+
.cv-section .project-link:hover { color: var(--primary-cv); }
|
581 |
+
|
582 |
+
.project-description {
|
583 |
+
color: var(--text-secondary);
|
584 |
+
line-height: 1.5;
|
585 |
+
}
|
586 |
+
|
587 |
+
.tech-stack {
|
588 |
+
display: block;
|
589 |
+
margin-top: 10px;
|
590 |
+
font-style: italic;
|
591 |
+
color: var(--text-muted);
|
592 |
+
}
|
593 |
+
|
594 |
+
/* Skills list */
|
595 |
+
.skills-list {
|
596 |
+
display: grid;
|
597 |
+
grid-template-columns: repeat(auto-fill, minmax(220px, 1fr));
|
598 |
+
gap: 15px;
|
599 |
+
margin-top: 20px;
|
600 |
+
margin-bottom: 40px; /* Added margin to create space between skills and projects */
|
601 |
+
}
|
602 |
+
|
603 |
+
.skill-category {
|
604 |
+
background: rgba(255, 255, 255, 0.05);
|
605 |
+
border-radius: var(--border-radius-sm);
|
606 |
+
padding: 15px;
|
607 |
+
transition: all var(--transition-med);
|
608 |
+
}
|
609 |
+
|
610 |
+
.skill-category:hover {
|
611 |
+
background: rgba(255, 255, 255, 0.08);
|
612 |
+
transform: translateY(-3px);
|
613 |
+
}
|
614 |
+
|
615 |
+
.skill-category h4 {
|
616 |
+
margin-top: 0;
|
617 |
+
margin-bottom: 10px;
|
618 |
+
font-size: 1.1rem;
|
619 |
+
}
|
620 |
+
|
621 |
+
.da-section .skill-category h4 { color: var(--primary-da); }
|
622 |
+
.ml-section .skill-category h4 { color: var(--primary-ml); }
|
623 |
+
.cv-section .skill-category h4 { color: var(--primary-cv); }
|
624 |
+
|
625 |
+
.skill-category ul {
|
626 |
+
margin: 0;
|
627 |
+
padding-left: 20px;
|
628 |
+
color: var(--text-secondary);
|
629 |
+
}
|
630 |
+
|
631 |
+
.skill-category li {
|
632 |
+
margin-bottom: 5px;
|
633 |
+
}
|
634 |
+
|
635 |
+
/* Section intro text */
|
636 |
+
.section-intro {
|
637 |
+
max-width: 800px;
|
638 |
+
margin-bottom: 30px;
|
639 |
+
line-height: 1.6;
|
640 |
+
color: var(--text-secondary);
|
641 |
+
font-size: 1.1rem;
|
642 |
+
}
|
643 |
+
|
644 |
+
/* Footer */
|
645 |
+
.footer {
|
646 |
+
text-align: center;
|
647 |
+
padding: 40px 20px;
|
648 |
+
margin-top: 60px;
|
649 |
+
color: var(--text-muted);
|
650 |
+
font-size: 0.9rem;
|
651 |
+
}
|
652 |
+
|
653 |
+
/* Animations for scroll */
|
654 |
+
.animate-on-scroll {
|
655 |
+
opacity: 0;
|
656 |
+
transform: translateY(20px);
|
657 |
+
transition: opacity 0.6s ease, transform 0.6s ease;
|
658 |
+
}
|
659 |
+
|
660 |
+
.animate-on-scroll.show {
|
661 |
+
opacity: 1;
|
662 |
+
transform: translateY(0);
|
663 |
+
}
|
664 |
+
|
665 |
+
/* Responsive design */
|
666 |
+
@media (max-width: 768px) {
|
667 |
+
.landing-section h1 {
|
668 |
+
font-size: 2.5rem;
|
669 |
+
}
|
670 |
+
|
671 |
+
.landing-section h2 {
|
672 |
+
font-size: 1.5rem;
|
673 |
+
}
|
674 |
+
|
675 |
+
.about-text {
|
676 |
+
font-size: 1.1rem;
|
677 |
+
}
|
678 |
+
|
679 |
+
.cards-grid {
|
680 |
+
grid-template-columns: 1fr;
|
681 |
+
}
|
682 |
+
|
683 |
+
.skills-list {
|
684 |
+
grid-template-columns: 1fr;
|
685 |
+
}
|
686 |
+
|
687 |
+
.profile-pic {
|
688 |
+
width: 150px;
|
689 |
+
height: 150px;
|
690 |
+
}
|
691 |
+
}
|
692 |
+
|
693 |
+
@media (max-width: 480px) {
|
694 |
+
.landing-section h1 {
|
695 |
+
font-size: 2rem;
|
696 |
+
}
|
697 |
+
|
698 |
+
.landing-section h2 {
|
699 |
+
font-size: 1.2rem;
|
700 |
+
}
|
701 |
+
|
702 |
+
.card-content {
|
703 |
+
min-height: 150px;
|
704 |
+
font-size: 22px;
|
705 |
+
}
|
706 |
+
|
707 |
+
.social-links {
|
708 |
+
gap: 15px;
|
709 |
+
}
|
710 |
+
|
711 |
+
.social-button {
|
712 |
+
width: 40px;
|
713 |
+
height: 40px;
|
714 |
+
font-size: 1rem;
|
715 |
+
}
|
716 |
+
}
|
717 |
+
"""
|
718 |
+
|
719 |
+
# --- Portfolio Layout ---
|
720 |
+
with gr.Blocks(title="Manyue's Portfolio", css=portfolio_css) as demo:
|
721 |
+
# Create sections
|
722 |
+
# Data Analytics Section (initially hidden)
|
723 |
+
with gr.Row(visible=False, elem_classes="section-container da-section") as da_section:
|
724 |
+
with gr.Column():
|
725 |
+
# Back button
|
726 |
+
back_from_da = gr.Button("← Back to Home", elem_classes="back-button back-button-da")
|
727 |
+
gr.HTML("""
|
728 |
+
<h1 class="section-heading">Data Analytics</h1>
|
729 |
+
<div class="section-intro">
|
730 |
+
I specialize in transforming raw data into actionable business insights that drive strategic decision-making.
|
731 |
+
With a strong background in both data analytics and commerce, I bridge the gap between business needs and technical solutions.
|
732 |
+
My approach combines statistical analysis with compelling data visualization to tell stories that solve real-world problems.
|
733 |
+
I've developed expertise in designing dashboards that make complex data accessible and creating end-to-end analysis
|
734 |
+
workflows that uncover hidden patterns and trends.
|
735 |
+
</div>
|
736 |
+
""")
|
737 |
+
|
738 |
+
gr.HTML("""
|
739 |
+
<h3 class="section-subheading da">Skills</h3>
|
740 |
+
|
741 |
+
<div class="skills-list">
|
742 |
+
<div class="skill-category">
|
743 |
+
<h4>Data Visualization</h4>
|
744 |
+
<ul>
|
745 |
+
<li>Power BI</li>
|
746 |
+
<li>Tableau</li>
|
747 |
+
<li>Matplotlib/Seaborn</li>
|
748 |
+
<li>Plotly/Dash</li>
|
749 |
+
</ul>
|
750 |
+
</div>
|
751 |
+
|
752 |
+
<div class="skill-category">
|
753 |
+
<h4>Data Manipulation</h4>
|
754 |
+
<ul>
|
755 |
+
<li>SQL</li>
|
756 |
+
<li>Pandas</li>
|
757 |
+
<li>NumPy</li>
|
758 |
+
<li>ETL Pipelines</li>
|
759 |
+
</ul>
|
760 |
+
</div>
|
761 |
+
|
762 |
+
<div class="skill-category">
|
763 |
+
<h4>Analysis Techniques</h4>
|
764 |
+
<ul>
|
765 |
+
<li>Statistical Analysis</li>
|
766 |
+
<li>A/B Testing</li>
|
767 |
+
<li>Time Series Analysis</li>
|
768 |
+
<li>Customer Segmentation</li>
|
769 |
+
</ul>
|
770 |
+
</div>
|
771 |
+
|
772 |
+
<div class="skill-category">
|
773 |
+
<h4>Business Intelligence</h4>
|
774 |
+
<ul>
|
775 |
+
<li>KPI Development</li>
|
776 |
+
<li>Executive Reporting</li>
|
777 |
+
<li>Data Storytelling</li>
|
778 |
+
<li>Process Optimization</li>
|
779 |
+
</ul>
|
780 |
+
</div>
|
781 |
+
</div>
|
782 |
+
|
783 |
+
<h3 class="section-subheading da">Projects</h3>
|
784 |
+
|
785 |
+
<div class="project-card">
|
786 |
+
<div class="project-title">
|
787 |
+
<span class="project-title-text">Northwind Sales Insight Dashboard</span>
|
788 |
+
<a href="https://github.com/Manyue-datascientist/northwind-retail-analysis" target="_blank" class="project-link">
|
789 |
+
""" + link_icon + """
|
790 |
+
<span>View Project</span>
|
791 |
+
</a>
|
792 |
+
</div>
|
793 |
+
<div class="project-description">
|
794 |
+
A business-driven case study where I performed in-depth EDA on the classic Northwind dataset. I uncovered key trends in sales, customer behavior, and product performance, and built a professional dashboard for storytelling using Power BI and SQL.
|
795 |
+
<span class="tech-stack"><strong>Tech Stack:</strong> SQL, Power BI, Pandas</span>
|
796 |
+
</div>
|
797 |
+
</div>
|
798 |
+
|
799 |
+
<div class="project-card">
|
800 |
+
<div class="project-title">
|
801 |
+
<span class="project-title-text">Loan Default Risk Analysis</span>
|
802 |
+
<a href="#" target="_blank" class="project-link">
|
803 |
+
""" + link_icon + """
|
804 |
+
<span>View Project</span>
|
805 |
+
</a>
|
806 |
+
</div>
|
807 |
+
<div class="project-description">
|
808 |
+
A feature-driven analytics project where I identified critical drivers of loan defaults. I applied statistical analysis and visual storytelling to assist in better loan disbursement strategies.
|
809 |
+
<span class="tech-stack"><strong>Tech Stack:</strong> Python, Matplotlib, Pandas</span>
|
810 |
+
</div>
|
811 |
+
</div>
|
812 |
+
""")
|
813 |
+
|
814 |
+
# Machine Learning Section (initially hidden)
|
815 |
+
with gr.Row(visible=False, elem_classes="section-container ml-section") as ml_section:
|
816 |
+
with gr.Column():
|
817 |
+
# Back button
|
818 |
+
back_from_ml = gr.Button("← Back to Home", elem_classes="back-button back-button-ml")
|
819 |
+
gr.HTML("""
|
820 |
+
<h1 class="section-heading">Machine Learning</h1>
|
821 |
+
<div class="section-intro">
|
822 |
+
My machine learning expertise spans from traditional algorithms to deep learning systems that solve real business challenges.
|
823 |
+
I've built end-to-end ML pipelines that deliver measurable impact, combining the right models with appropriate feature engineering
|
824 |
+
techniques. I focus on creating solutions that are not only technically sound but also deployable, maintainable,
|
825 |
+
and integrated with business workflows. With a solid foundation in Python-based ML frameworks and cloud
|
826 |
+
deployment platforms, I develop models that generate actionable predictions and insights.
|
827 |
+
</div>
|
828 |
+
""")
|
829 |
+
|
830 |
+
gr.HTML("""
|
831 |
+
<h3 class="section-subheading ml">Skills</h3>
|
832 |
+
|
833 |
+
<div class="skills-list">
|
834 |
+
<div class="skill-category">
|
835 |
+
<h4>Frameworks & Libraries</h4>
|
836 |
+
<ul>
|
837 |
+
<li>TensorFlow/Keras</li>
|
838 |
+
<li>PyTorch</li>
|
839 |
+
<li>Scikit-Learn</li>
|
840 |
+
<li>XGBoost/LightGBM</li>
|
841 |
+
</ul>
|
842 |
+
</div>
|
843 |
+
|
844 |
+
<div class="skill-category">
|
845 |
+
<h4>ML Techniques</h4>
|
846 |
+
<ul>
|
847 |
+
<li>Supervised Learning</li>
|
848 |
+
<li>Unsupervised Learning</li>
|
849 |
+
<li>Deep Learning</li>
|
850 |
+
<li>Natural Language Processing</li>
|
851 |
+
</ul>
|
852 |
+
</div>
|
853 |
+
|
854 |
+
<div class="skill-category">
|
855 |
+
<h4>MLOps</h4>
|
856 |
+
<ul>
|
857 |
+
<li>ML Pipelines</li>
|
858 |
+
<li>Model Monitoring</li>
|
859 |
+
<li>Deployment Strategies</li>
|
860 |
+
<li>Version Control (DVC)</li>
|
861 |
+
</ul>
|
862 |
+
</div>
|
863 |
+
|
864 |
+
<div class="skill-category">
|
865 |
+
<h4>Cloud ML Services</h4>
|
866 |
+
<ul>
|
867 |
+
<li>AWS SageMaker</li>
|
868 |
+
<li>Google AI Platform</li>
|
869 |
+
<li>Azure ML</li>
|
870 |
+
<li>MLflow</li>
|
871 |
+
</ul>
|
872 |
+
</div>
|
873 |
+
</div>
|
874 |
+
|
875 |
+
<h3 class="section-subheading ml">Projects</h3>
|
876 |
+
|
877 |
+
<div class="project-card">
|
878 |
+
<div class="project-title">
|
879 |
+
<span class="project-title-text">University Admission Predictor</span>
|
880 |
+
<a href="#" target="_blank" class="project-link">
|
881 |
+
""" + link_icon + """
|
882 |
+
<span>Try the Predictor</span>
|
883 |
+
</a>
|
884 |
+
</div>
|
885 |
+
<div class="project-description">
|
886 |
+
Built a regression model to predict the chances of a student getting admitted to top universities based on academic profiles. The project includes feature importance analysis, model tuning, and a live demo deployed with Streamlit.
|
887 |
+
<span class="tech-stack"><strong>Tech Stack:</strong> Scikit-learn, Streamlit, NumPy</span>
|
888 |
+
</div>
|
889 |
+
</div>
|
890 |
+
|
891 |
+
<div class="project-card">
|
892 |
+
<div class="project-title">
|
893 |
+
<span class="project-title-text">AI Chat Assistant for Recruiters</span>
|
894 |
+
<a href="https://huggingface.co/spaces/Manyue-DataScientist/AI-Assistant" target="_blank" class="project-link">
|
895 |
+
""" + link_icon + """
|
896 |
+
<span>Chat with Assistant</span>
|
897 |
+
</a>
|
898 |
+
</div>
|
899 |
+
<div class="project-description">
|
900 |
+
A custom-trained assistant that answers queries about my resume and portfolio using NLP and retrieval techniques. Built to simulate real-time interactions with hiring teams, this project showcases my ability to work with large language models and create practical AI applications.
|
901 |
+
<span class="tech-stack"><strong>Tech Stack:</strong> LangChain, OpenAI, Gradio</span>
|
902 |
+
</div>
|
903 |
+
</div>
|
904 |
+
|
905 |
+
<div class="project-card">
|
906 |
+
<div class="project-title">
|
907 |
+
<span class="project-title-text">Speaker Diarization Application</span>
|
908 |
+
<a href="https://huggingface.co/spaces/Manyue-DataScientist/speaker-diarization-app-v2" target="_blank" class="project-link">
|
909 |
+
""" + link_icon + """
|
910 |
+
<span>Try the Application</span>
|
911 |
+
</a>
|
912 |
+
</div>
|
913 |
+
<div class="project-description">
|
914 |
+
Developed an advanced multi-speaker audio processing system that performs speaker diarization, transcription, and summarization to extract meaningful insights from multi-speaker conversations.
|
915 |
+
<span class="tech-stack"><strong>Tech Stack:</strong> PyTorch, Hugging Face Transformers, Gradio</span>
|
916 |
+
</div>
|
917 |
+
</div>
|
918 |
+
""")
|
919 |
+
|
920 |
+
# Computer Vision Section (initially hidden)
|
921 |
+
with gr.Row(visible=False, elem_classes="section-container cv-section") as cv_section:
|
922 |
+
with gr.Column():
|
923 |
+
# Back button
|
924 |
+
back_from_cv = gr.Button("← Back to Home", elem_classes="back-button back-button-cv")
|
925 |
+
gr.HTML("""
|
926 |
+
<h1 class="section-heading">Computer Vision</h1>
|
927 |
+
<div class="section-intro">
|
928 |
+
I'm passionate about developing computer vision systems that can perceive and understand visual information in ways that benefit humans.
|
929 |
+
My experience spans from implementing state-of-the-art algorithms to deploying them in real-world scenarios. I've worked on projects
|
930 |
+
that enable machines to "see" and interpret their environment through image processing, object detection, and image classification.
|
931 |
+
I focus particularly on applications that improve accessibility and solve tangible problems, creating CV solutions
|
932 |
+
that operate efficiently even with hardware constraints.
|
933 |
+
</div>
|
934 |
+
""")
|
935 |
+
|
936 |
+
gr.HTML("""
|
937 |
+
<h3 class="section-subheading cv">Skills</h3>
|
938 |
+
|
939 |
+
<div class="skills-list">
|
940 |
+
<div class="skill-category">
|
941 |
+
<h4>CV Techniques</h4>
|
942 |
+
<ul>
|
943 |
+
<li>Object Detection</li>
|
944 |
+
<li>Image Segmentation</li>
|
945 |
+
<li>Feature Extraction</li>
|
946 |
+
<li>Image Classification</li>
|
947 |
+
</ul>
|
948 |
+
</div>
|
949 |
+
|
950 |
+
<div class="skill-category">
|
951 |
+
<h4>CV Libraries</h4>
|
952 |
+
<ul>
|
953 |
+
<li>OpenCV</li>
|
954 |
+
<li>PIL/Pillow</li>
|
955 |
+
<li>TorchVision</li>
|
956 |
+
<li>TF Computer Vision</li>
|
957 |
+
</ul>
|
958 |
+
</div>
|
959 |
+
|
960 |
+
<div class="skill-category">
|
961 |
+
<h4>Deep Learning for CV</h4>
|
962 |
+
<ul>
|
963 |
+
<li>CNNs</li>
|
964 |
+
<li>YOLO frameworks</li>
|
965 |
+
<li>Transfer Learning</li>
|
966 |
+
<li>Object Recognition</li>
|
967 |
+
</ul>
|
968 |
+
</div>
|
969 |
+
|
970 |
+
<div class="skill-category">
|
971 |
+
<h4>Applications</h4>
|
972 |
+
<ul>
|
973 |
+
<li>Accessibility Solutions</li>
|
974 |
+
<li>OCR/Document Analysis</li>
|
975 |
+
<li>Motion Tracking</li>
|
976 |
+
<li>Edge Deployment</li>
|
977 |
+
</ul>
|
978 |
+
</div>
|
979 |
+
</div>
|
980 |
+
|
981 |
+
<h3 class="section-subheading cv">Projects</h3>
|
982 |
+
|
983 |
+
<div class="project-card">
|
984 |
+
<div class="project-title">
|
985 |
+
<span class="project-title-text">Smart Shopping Assistant for the Blind</span>
|
986 |
+
<a href="https://github.com/Manyue-datascientist/smart_glove_project" target="_blank" class="project-link">
|
987 |
+
""" + link_icon + """
|
988 |
+
<span>View Project</span>
|
989 |
+
</a>
|
990 |
+
</div>
|
991 |
+
<div class="project-description">
|
992 |
+
Designed a system using object detection and OCR to help visually impaired individuals find products and navigate shopping aisles. Developed with real-time feedback on Raspberry Pi and OAK-D camera, this project demonstrates my commitment to creating technology that solves real accessibility challenges.
|
993 |
+
<span class="tech-stack"><strong>Tech Stack:</strong> YOLOv8, OpenCV, Raspberry Pi</span>
|
994 |
+
</div>
|
995 |
+
</div>
|
996 |
+
|
997 |
+
<div class="project-card">
|
998 |
+
<div class="project-title">
|
999 |
+
<span class="project-title-text">Traffic Flow Counter (Upcoming)</span>
|
1000 |
+
<a href="#" target="_blank" class="project-link">
|
1001 |
+
""" + link_icon + """
|
1002 |
+
<span>Coming Soon</span>
|
1003 |
+
</a>
|
1004 |
+
</div>
|
1005 |
+
<div class="project-description">
|
1006 |
+
An edge solution using Raspberry Pi to monitor and count vehicles at intersections, providing real-time traffic flow analytics. This project demonstrates efficient deployment of CV models on resource-constrained devices.
|
1007 |
+
<span class="tech-stack"><strong>Tech Stack:</strong> YOLOv5, Raspberry Pi, OpenCV</span>
|
1008 |
+
</div>
|
1009 |
+
</div>
|
1010 |
+
""")
|
1011 |
+
|
1012 |
+
with gr.Row(visible=True, elem_classes="landing-section") as landing_section:
|
1013 |
+
with gr.Column():
|
1014 |
+
# Profile section with picture - using the actual image from data folder
|
1015 |
+
try:
|
1016 |
+
# Get the image as data URI
|
1017 |
+
profile_img_uri = image_to_data_uri("data/My_photo.jpeg")
|
1018 |
+
gr.HTML(f"""
|
1019 |
+
<div class="profile-container">
|
1020 |
+
<div class="profile-pic">
|
1021 |
+
<img src="{profile_img_uri}" alt="Manyue Javvadi" />
|
1022 |
+
</div>
|
1023 |
+
<div class="name-text">Manyue Javvadi</div>
|
1024 |
+
</div>
|
1025 |
+
<h2>AI/ML Engineer & Data Scientist</h2>
|
1026 |
+
<div class="about-text">
|
1027 |
+
I'm a software engineer turned AI/ML practitioner with a strong foundation in Commerce and experience in ML, computer vision, and data analytics.
|
1028 |
+
I blend business understanding with data-driven thinking to create real-world solutions. Currently open to roles in Data Science, Machine Learning Engineering, and Computer Vision.
|
1029 |
+
</div>
|
1030 |
+
|
1031 |
+
<div class="skills-container">
|
1032 |
+
<div class="skill-pill">Python</div>
|
1033 |
+
<div class="skill-pill">Machine Learning</div>
|
1034 |
+
<div class="skill-pill">TensorFlow</div>
|
1035 |
+
<div class="skill-pill">PyTorch</div>
|
1036 |
+
<div class="skill-pill">Computer Vision</div>
|
1037 |
+
<div class="skill-pill">Data Analytics</div>
|
1038 |
+
<div class="skill-pill">SQL</div>
|
1039 |
+
<div class="skill-pill">Power BI</div>
|
1040 |
+
</div>
|
1041 |
+
|
1042 |
+
<div class="social-links">
|
1043 |
+
<a href="https://www.linkedin.com/in/manyue-javvadi-datascientist/" target="_blank" class="social-button social-linkedin" aria-label="LinkedIn">
|
1044 |
+
""" + linkedin_icon + """
|
1045 |
+
</a>
|
1046 |
+
<a href="https://github.com/Manyue-datascientist" target="_blank" class="social-button social-github" aria-label="GitHub">
|
1047 |
+
""" + github_icon + """
|
1048 |
+
</a>
|
1049 |
+
<a href="mailto:[email protected]" class="social-button social-email" aria-label="Contact Me" id="contact_btn">
|
1050 |
+
""" + mail_icon + """
|
1051 |
+
</a>
|
1052 |
+
</div>
|
1053 |
+
|
1054 |
+
<h2>My Specializations</h2>
|
1055 |
+
""")
|
1056 |
+
except Exception as e:
|
1057 |
+
# Fallback if image cannot be loaded
|
1058 |
+
gr.HTML("""
|
1059 |
+
<div class="profile-container">
|
1060 |
+
<div class="profile-pic">
|
1061 |
+
<img src="/api/placeholder/400/400" alt="Manyue Javvadi" />
|
1062 |
+
</div>
|
1063 |
+
<div class="name-text">Manyue Javvadi</div>
|
1064 |
+
</div>
|
1065 |
+
<h2>AI/ML Engineer & Data Scientist</h2>
|
1066 |
+
<div class="about-text">
|
1067 |
+
I'm a software engineer turned AI/ML practitioner with a strong foundation in Commerce and experience in ML, computer vision, and data analytics.
|
1068 |
+
I blend business understanding with data-driven thinking to create real-world solutions. Currently open to roles in Data Science, Machine Learning Engineering, and Computer Vision.
|
1069 |
+
</div>
|
1070 |
+
|
1071 |
+
<div class="skills-container">
|
1072 |
+
<div class="skill-pill">Python</div>
|
1073 |
+
<div class="skill-pill">Machine Learning</div>
|
1074 |
+
<div class="skill-pill">TensorFlow</div>
|
1075 |
+
<div class="skill-pill">PyTorch</div>
|
1076 |
+
<div class="skill-pill">Computer Vision</div>
|
1077 |
+
<div class="skill-pill">Data Analytics</div>
|
1078 |
+
<div class="skill-pill">SQL</div>
|
1079 |
+
<div class="skill-pill">Power BI</div>
|
1080 |
+
</div>
|
1081 |
+
|
1082 |
+
<div class="social-links">
|
1083 |
+
<a href="https://www.linkedin.com/in/manyue-javvadi-datascientist/" target="_blank" class="social-button social-linkedin" aria-label="LinkedIn">
|
1084 |
+
""" + linkedin_icon + """
|
1085 |
+
</a>
|
1086 |
+
<a href="https://github.com/Manyue-datascientist" target="_blank" class="social-button social-github" aria-label="GitHub">
|
1087 |
+
""" + github_icon + """
|
1088 |
+
</a>
|
1089 |
+
<a href="mailto:[email protected]" class="social-button social-email" aria-label="Contact Me" id="contact_btn">
|
1090 |
+
""" + mail_icon + """
|
1091 |
+
</a>
|
1092 |
+
</div>
|
1093 |
+
|
1094 |
+
<h2>My Specializations</h2>
|
1095 |
+
""")
|
1096 |
+
|
1097 |
+
# Cards Grid with proper structure
|
1098 |
+
with gr.Row(elem_classes="cards-grid"):
|
1099 |
+
with gr.Column():
|
1100 |
+
# Data Analytics Card
|
1101 |
+
gr.HTML('<div class="card-container da">')
|
1102 |
+
da_button = gr.Button("Data Analytics", elem_classes="card-button")
|
1103 |
+
gr.HTML("""
|
1104 |
+
<div class="card-inner">
|
1105 |
+
<div class="card-content">
|
1106 |
+
""" + data_analytics_icon + """
|
1107 |
+
<span>Data Analytics</span>
|
1108 |
+
</div>
|
1109 |
+
<div class="card-description">
|
1110 |
+
Data storytelling, insights extraction, interactive dashboards & business problem-solving
|
1111 |
+
</div>
|
1112 |
+
</div>
|
1113 |
+
</div>
|
1114 |
+
""")
|
1115 |
+
|
1116 |
+
with gr.Column():
|
1117 |
+
# Machine Learning Card
|
1118 |
+
gr.HTML('<div class="card-container ml">')
|
1119 |
+
ml_button = gr.Button("Machine Learning", elem_classes="card-button")
|
1120 |
+
gr.HTML("""
|
1121 |
+
<div class="card-inner">
|
1122 |
+
<div class="card-content">
|
1123 |
+
""" + machine_learning_icon + """
|
1124 |
+
<span>Machine Learning</span>
|
1125 |
+
</div>
|
1126 |
+
<div class="card-description">
|
1127 |
+
Feature engineering, model training, deployment & automation pipelines
|
1128 |
+
</div>
|
1129 |
+
</div>
|
1130 |
+
</div>
|
1131 |
+
""")
|
1132 |
+
|
1133 |
+
with gr.Column():
|
1134 |
+
# Computer Vision Card
|
1135 |
+
gr.HTML('<div class="card-container cv">')
|
1136 |
+
cv_button = gr.Button("Computer Vision", elem_classes="card-button")
|
1137 |
+
gr.HTML("""
|
1138 |
+
<div class="card-inner">
|
1139 |
+
<div class="card-content">
|
1140 |
+
""" + computer_vision_icon + """
|
1141 |
+
<span>Computer Vision</span>
|
1142 |
+
</div>
|
1143 |
+
<div class="card-description">
|
1144 |
+
Object detection, image recognition, edge AI & accessibility applications
|
1145 |
+
</div>
|
1146 |
+
</div>
|
1147 |
+
</div>
|
1148 |
+
""")
|
1149 |
+
|
1150 |
+
# Contact section - Updated to "Hire Me" with email link
|
1151 |
+
gr.HTML("""
|
1152 |
+
<!-- Contact section -->
|
1153 |
+
<div id="contact_section">
|
1154 |
+
<h2>Contact Me</h2>
|
1155 |
+
<div class="contact-container">
|
1156 |
+
<p>Looking for a data scientist or ML engineer for your team?</p>
|
1157 |
+
<a href="mailto:[email protected]" class="hire-me-button">Hire Me</a>
|
1158 |
+
</div>
|
1159 |
+
</div>
|
1160 |
+
|
1161 |
+
<!-- Footer -->
|
1162 |
+
<div class="footer">
|
1163 |
+
<p>© 2025 Manyue Javvadi. All rights reserved.</p>
|
1164 |
+
<p>Made with Gradio</p>
|
1165 |
+
</div>
|
1166 |
+
""")
|
1167 |
+
|
1168 |
+
# Set up click events for navigation
|
1169 |
+
da_button.click(show_data_analytics, inputs=None, outputs=[landing_section, da_section, ml_section, cv_section])
|
1170 |
+
ml_button.click(show_machine_learning, inputs=None, outputs=[landing_section, da_section, ml_section, cv_section])
|
1171 |
+
cv_button.click(show_computer_vision, inputs=None, outputs=[landing_section, da_section, ml_section, cv_section])
|
1172 |
+
|
1173 |
+
back_from_da.click(go_home, inputs=None, outputs=[landing_section, da_section, ml_section, cv_section])
|
1174 |
+
back_from_ml.click(go_home, inputs=None, outputs=[landing_section, da_section, ml_section, cv_section])
|
1175 |
+
back_from_cv.click(go_home, inputs=None, outputs=[landing_section, da_section, ml_section, cv_section])
|
1176 |
+
|
1177 |
+
# Launch the app
|
1178 |
+
demo.launch()
|