Spaces:
Running
Running
File size: 56,315 Bytes
bec29d2 54d9887 bec29d2 fd017bb 580976d bec29d2 35020aa 54d9887 bec29d2 311d3a5 be768b9 309dc55 bec29d2 caf888f bec29d2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 |
# -*- coding: utf-8 -*-
"""Yet another copy of MCQ, Toxic, Bias.ipynb
Automatically generated by Colab.
Original file is located at
https://colab.research.google.com/drive/1_4-bS633DBVMc5-jBLCmyUaXzAi5RL6f
#MCQ Generation Using T5
"""
# mcq_generator.py (corrected)
import nltk
import random
import re
import tempfile
import torch
import spacy
import pandas as pd
import numpy as np
from sklearn.feature_extraction.text import TfidfVectorizer
from transformers import pipeline, T5ForConditionalGeneration, T5Tokenizer, AutoModelForQuestionAnswering, AutoTokenizer
from nltk.corpus import wordnet as wn
from nltk.corpus import stopwords
from nltk import pos_tag, word_tokenize
from sentence_transformers import SentenceTransformer, util
from rouge import Rouge
# ❌ DO NOT include:
# import matplotlib.pyplot as plt
# from IPython.display import display
# Download required NLTK packages
nltk.download('punkt')
nltk.download('averaged_perceptron_tagger_eng')
nltk.download('wordnet')
nltk.download('stopwords')
nltk.download('punkt_tab')
# Load Safety Models
toxicity_model = pipeline("text-classification", model="unitary/toxic-bert")
bias_model = pipeline("zero-shot-classification", model="facebook/bart-large-mnli")
# Enhanced Safety check function with comprehensive bias detection
def is_suitable_for_students(text):
"""Comprehensive content check for appropriateness in educational settings"""
text = text.strip()
if not text:
print("⚠️ Empty paragraph provided.")
return False
# Check for text length
if len(text.split()) < 20:
print("⚠️ Text too short for meaningful MCQ generation.")
return False
# Check Toxicity
toxicity = toxicity_model(text[:512])[0]
tox_label, tox_score = toxicity['label'].lower(), toxicity['score']
# COMPREHENSIVE BIAS DETECTION
# 1. Check for gender bias
gender_bias_keywords = [
"women are", "men are", "boys are", "girls are",
"females are", "males are", "better at", "worse at",
"naturally better", "suited for", "belong in",
"should be", "can't do", "always", "never"
]
# 2. Check for racial bias
racial_bias_keywords = [
"race", "racial", "racist", "ethnicity", "ethnic",
"black people", "white people", "asian people", "latinos",
"minorities", "majority", "immigrants", "foreigners"
]
# 3. Check for political bias
political_bias_keywords = [
"liberal", "conservative", "democrat", "republican",
"left-wing", "right-wing", "socialism", "capitalism",
"government", "politician", "corrupt", "freedom", "rights",
"policy", "policies", "taxes", "taxation"
]
# 4. Check for religious bias
religious_bias_keywords = [
"christian", "muslim", "jewish", "hindu", "buddhist",
"atheist", "religion", "religious", "faith", "belief",
"worship", "sacred", "holy"
]
# 5. Check for socioeconomic bias
socioeconomic_bias_keywords = [
"poor", "rich", "wealthy", "poverty", "privileged",
"underprivileged", "class", "elite", "welfare", "lazy",
"hardworking", "deserve", "entitled"
]
# Combined bias keywords
all_bias_keywords = (gender_bias_keywords + racial_bias_keywords +
political_bias_keywords + religious_bias_keywords +
socioeconomic_bias_keywords)
# Additional problematic generalizations
problematic_phrases = [
"more aggressive", "less educated", "less intelligent", "more violent",
"inferior", "superior", "better", "smarter", "worse", "dumber",
"tend to be more", "tend to be less", "are naturally", "by nature",
"all people", "those people", "these people", "that group",
"always", "never", "inherently", "genetically"
]
# Check if any bias keywords are present
contains_bias_keywords = any(keyword in text.lower() for keyword in all_bias_keywords)
contains_problematic_phrases = any(phrase in text.lower() for phrase in problematic_phrases)
# Advanced bias detection using BART model
# Use both general and specific bias detection sets
general_bias_labels = ["neutral", "biased", "discriminatory", "prejudiced", "stereotyping"]
gender_bias_labels = ["gender neutral", "gender biased", "sexist"]
racial_bias_labels = ["racially neutral", "racially biased", "racist"]
political_bias_labels = ["politically neutral", "politically biased", "partisan"]
# Run general bias detection first
bias_result = bias_model(text[:512], candidate_labels=general_bias_labels)
bias_label = bias_result['labels'][0].lower()
bias_score = bias_result['scores'][0]
# If general check is uncertain, run more specific checks
if bias_score < 0.7 and contains_bias_keywords:
# Determine which specific bias check to run
if any(keyword in text.lower() for keyword in gender_bias_keywords):
specific_result = bias_model(text[:512], candidate_labels=gender_bias_labels)
if specific_result['labels'][0] != gender_bias_labels[0] and specific_result['scores'][0] > 0.6:
bias_label = "gender biased"
bias_score = specific_result['scores'][0]
if any(keyword in text.lower() for keyword in racial_bias_keywords):
specific_result = bias_model(text[:512], candidate_labels=racial_bias_labels)
if specific_result['labels'][0] != racial_bias_labels[0] and specific_result['scores'][0] > 0.6:
bias_label = "racially biased"
bias_score = specific_result['scores'][0]
if any(keyword in text.lower() for keyword in political_bias_keywords):
specific_result = bias_model(text[:512], candidate_labels=political_bias_labels)
if specific_result['labels'][0] != political_bias_labels[0] and specific_result['scores'][0] > 0.6:
bias_label = "politically biased"
bias_score = specific_result['scores'][0]
# Set appropriate thresholds
bias_threshold = 0.55 # Lower to catch more subtle bias
toxicity_threshold = 0.60
# Decision logic with detailed reporting
if tox_label == "toxic" and tox_score > toxicity_threshold:
print(f"⚠️ Toxicity Detected ({tox_score:.2f}) — ❌ Not Suitable for Students")
return False
elif bias_label in ["biased", "discriminatory", "prejudiced", "stereotyping",
"gender biased", "racially biased", "politically biased"] and bias_score > bias_threshold:
print(f"⚠️ {bias_label.title()} Content Detected ({bias_score:.2f}) — ❌ Not Suitable for Students")
return False
elif contains_problematic_phrases:
print(f"⚠️ Problematic Generalizations Detected — ❌ Not Suitable for Students")
return False
else:
print(f"✅ Passed Safety Check — 🟢 Proceeding to Generate MCQs")
return True
class ImprovedMCQGenerator:
def __init__(self):
# Initialize QG-specific model for better question generation
self.qg_model_name = "lmqg/t5-base-squad-qg" # Specialized question generation model
try:
self.qg_tokenizer = AutoTokenizer.from_pretrained(self.qg_model_name)
self.qg_model = AutoModelForSeq2SeqLM.from_pretrained(self.qg_model_name)
self.has_qg_model = True
except:
# Fall back to T5 if specialized model fails to load
self.has_qg_model = False
print("Could not load specialized QG model, falling back to T5")
# Initialize T5 model for distractors and fallback question generation
self.t5_model_name = "google/flan-t5-base" # Using base model for better quality
self.t5_tokenizer = T5Tokenizer.from_pretrained(self.t5_model_name)
self.t5_model = T5ForConditionalGeneration.from_pretrained(self.t5_model_name)
# Configuration
self.max_length = 128
self.stop_words = set(stopwords.words('english'))
def clean_text(self, text):
"""Clean and normalize text"""
text = re.sub(r'\s+', ' ', text) # Remove extra whitespace
text = text.strip()
return text
def generate_question(self, context, answer):
"""Generate a question given a context and answer using specialized QG model"""
# Find the sentence containing the answer for better context
sentences = sent_tokenize(context)
relevant_sentences = []
for sentence in sentences:
if answer.lower() in sentence.lower():
relevant_sentences.append(sentence)
if not relevant_sentences:
# If answer not found in any sentence, use a random sentence
if sentences:
relevant_sentences = [random.choice(sentences)]
else:
relevant_sentences = [context]
# Use up to 3 sentences for context (the sentence with answer + neighbors)
if len(relevant_sentences) == 1 and len(sentences) > 1:
# Find the index of the relevant sentence
idx = sentences.index(relevant_sentences[0])
if idx > 0:
relevant_sentences.append(sentences[idx-1])
if idx < len(sentences) - 1:
relevant_sentences.append(sentences[idx+1])
# Join the relevant sentences
focused_context = ' '.join(relevant_sentences)
if self.has_qg_model:
# Use specialized QG model
input_text = f"answer: {answer} context: {focused_context}"
inputs = self.qg_tokenizer(input_text, return_tensors="pt", max_length=512, truncation=True)
outputs = self.qg_model.generate(
input_ids=inputs["input_ids"],
attention_mask=inputs["attention_mask"],
max_length=self.max_length,
num_beams=5,
top_k=120,
top_p=0.95,
temperature=1.0,
do_sample=True,
num_return_sequences=3,
no_repeat_ngram_size=2
)
# Get multiple questions and pick the best one
questions = [self.qg_tokenizer.decode(output, skip_special_tokens=True) for output in outputs]
valid_questions = [q for q in questions if q.endswith('?') and answer.lower() not in q.lower()]
if valid_questions:
return self.clean_text(valid_questions[0])
# Fallback to T5 model if specialized model fails or isn't available
input_text = f"generate question for answer: {answer} from context: {focused_context}"
inputs = self.t5_tokenizer(input_text, return_tensors="pt", max_length=512, truncation=True)
outputs = self.t5_model.generate(
input_ids=inputs["input_ids"],
attention_mask=inputs["attention_mask"],
max_length=self.max_length,
num_beams=5,
top_k=120,
top_p=0.95,
temperature=1.0,
do_sample=True,
num_return_sequences=3,
no_repeat_ngram_size=2
)
questions = [self.t5_tokenizer.decode(output, skip_special_tokens=True) for output in outputs]
# Clean and validate questions
valid_questions = []
for q in questions:
# Format the question properly
q = self.clean_text(q)
if not q.endswith('?'):
q += '?'
# Avoid questions that contain the answer directly
if answer.lower() not in q.lower():
valid_questions.append(q)
if valid_questions:
return valid_questions[0]
# If all else fails, create a simple question
return f"Which of the following best describes {answer}?"
def extract_key_entities(self, text, n=8):
"""Extract key entities from text that would make good answers"""
# Tokenize and get POS tags
sentences = sent_tokenize(text)
# Get noun phrases and named entities
key_entities = []
for sentence in sentences:
words = word_tokenize(sentence)
pos_tags = pos_tag(words)
# Extract noun phrases (consecutive nouns and adjectives)
i = 0
while i < len(pos_tags):
if pos_tags[i][1].startswith('NN') or pos_tags[i][1].startswith('JJ'):
phrase = pos_tags[i][0]
j = i + 1
while j < len(pos_tags) and (pos_tags[j][1].startswith('NN') or pos_tags[j][1] == 'JJ'):
phrase += ' ' + pos_tags[j][0]
j += 1
if len(phrase.split()) >= 1 and not all(w.lower() in self.stop_words for w in phrase.split()):
key_entities.append(phrase)
i = j
else:
i += 1
# Extract important terms based on POS tags
important_terms = []
for sentence in sentences:
words = word_tokenize(sentence)
pos_tags = pos_tag(words)
# Get nouns, verbs, and adjectives
terms = [word for word, pos in pos_tags if
(pos.startswith('NN') or pos.startswith('VB') or pos.startswith('JJ'))
and word.lower() not in self.stop_words
and len(word) > 2]
important_terms.extend(terms)
# Combine and remove duplicates
all_candidates = key_entities + important_terms
unique_candidates = []
for candidate in all_candidates:
# Clean candidate
candidate = candidate.strip()
candidate = re.sub(r'[^\w\s]', '', candidate)
# Skip if empty or just stopwords
if not candidate or all(w.lower() in self.stop_words for w in candidate.split()):
continue
# Check for duplicates
if candidate.lower() not in [c.lower() for c in unique_candidates]:
unique_candidates.append(candidate)
# Use TF-IDF to rank entities by importance
if len(unique_candidates) > n:
try:
vectorizer = TfidfVectorizer()
tfidf_matrix = vectorizer.fit_transform([text] + unique_candidates)
document_vector = tfidf_matrix[0:1]
entity_vectors = tfidf_matrix[1:]
# Calculate similarity to document
similarities = cosine_similarity(document_vector, entity_vectors).flatten()
# Get top n entities
ranked_entities = [entity for _, entity in sorted(zip(similarities, unique_candidates), reverse=True)]
return ranked_entities[:n]
except:
# Fallback if TF-IDF fails
return random.sample(unique_candidates, min(n, len(unique_candidates)))
return unique_candidates[:n]
def generate_distractors(self, answer, context, n=3):
"""Generate plausible distractors for a given answer"""
# Extract potential distractors from context
potential_distractors = self.extract_key_entities(context, n=15)
# Remove the correct answer and similar options
filtered_distractors = []
answer_lower = answer.lower()
for distractor in potential_distractors:
distractor_lower = distractor.lower()
# Skip if it's the answer or too similar to the answer
if distractor_lower == answer_lower:
continue
if answer_lower in distractor_lower or distractor_lower in answer_lower:
continue
if len(set(distractor_lower.split()) & set(answer_lower.split())) > len(answer_lower.split()) / 2:
continue
filtered_distractors.append(distractor)
# If we need more distractors, generate them with T5
if len(filtered_distractors) < n:
input_text = f"generate alternatives for: {answer} context: {context}"
inputs = self.t5_tokenizer(input_text, return_tensors="pt", max_length=512, truncation=True)
outputs = self.t5_model.generate(
input_ids=inputs["input_ids"],
attention_mask=inputs["attention_mask"],
max_length=64,
num_beams=5,
top_k=50,
top_p=0.95,
temperature=1.2,
do_sample=True,
num_return_sequences=5
)
model_distractors = [self.t5_tokenizer.decode(out, skip_special_tokens=True) for out in outputs]
# Clean and validate model distractors
for distractor in model_distractors:
distractor = self.clean_text(distractor)
# Skip if it's the answer or too similar
if distractor.lower() == answer.lower():
continue
if answer.lower() in distractor.lower() or distractor.lower() in answer.lower():
continue
filtered_distractors.append(distractor)
# Ensure uniqueness
unique_distractors = []
for d in filtered_distractors:
if d.lower() not in [x.lower() for x in unique_distractors]:
unique_distractors.append(d)
# If we still don't have enough, create semantic variations
while len(unique_distractors) < n:
if not unique_distractors and not potential_distractors:
# No existing distractors to work with, create something different
unique_distractors.append(f"None of the above")
unique_distractors.append(f"All of the above")
unique_distractors.append(f"Not mentioned in the text")
else:
base = answer if not unique_distractors else random.choice(unique_distractors)
words = base.split()
if len(words) > 1:
# Modify a multi-word distractor
modified = words.copy()
pos_to_change = random.randint(0, len(words)-1)
# Make sure the new distractor is different
modification = f"alternative_{modified[pos_to_change]}"
while modification in [x.lower() for x in unique_distractors]:
modification += "_variant"
modified[pos_to_change] = modification
unique_distractors.append(" ".join(modified))
else:
# Modify a single word
modification = f"alternative_{base}"
while modification in [x.lower() for x in unique_distractors]:
modification += "_variant"
unique_distractors.append(modification)
# Return the required number of distractors
return unique_distractors[:n]
def validate_mcq(self, mcq, context):
"""Validate if an MCQ meets quality standards"""
# Check if question ends with question mark
if not mcq['question'].endswith('?'):
return False
# Check if the question is too short
if len(mcq['question'].split()) < 5:
return False
# Check if question contains the answer (too obvious)
if mcq['answer'].lower() in mcq['question'].lower():
return False
# Check if options are sufficiently different
if len(set([o.lower() for o in mcq['options']])) < len(mcq['options']):
return False
# Check if answer is in the context
if mcq['answer'].lower() not in context.lower():
return False
return True
def generate_mcqs(self, paragraph, num_questions=5):
"""Generate multiple-choice questions from a paragraph"""
paragraph = self.clean_text(paragraph)
mcqs = []
# Extract potential answers
potential_answers = self.extract_key_entities(paragraph, n=num_questions*3)
# Shuffle potential answers
random.shuffle(potential_answers)
# Try to generate MCQs for each potential answer
attempts = 0
max_attempts = num_questions * 3 # Try more potential answers than needed
while len(mcqs) < num_questions and attempts < max_attempts and potential_answers:
answer = potential_answers.pop(0)
attempts += 1
# Generate question
question = self.generate_question(paragraph, answer)
# Generate distractors
distractors = self.generate_distractors(answer, paragraph)
# Create MCQ
mcq = {
'question': question,
'options': [answer] + distractors,
'answer': answer
}
# Validate MCQ
if self.validate_mcq(mcq, paragraph):
# Shuffle options
shuffled_options = mcq['options'].copy()
random.shuffle(shuffled_options)
# Find the index of the correct answer
correct_index = shuffled_options.index(answer)
# Update MCQ with shuffled options
mcq['options'] = shuffled_options
mcq['answer_index'] = correct_index
mcqs.append(mcq)
return mcqs[:num_questions]
# Helper functions
def format_mcq(mcq, index):
"""Format MCQ for display"""
question = f"Q{index+1}: {mcq['question']}"
options = [f" {chr(65+i)}. {option}" for i, option in enumerate(mcq['options'])]
answer = f"Answer: {chr(65+mcq['answer_index'])}"
return "\n".join([question] + options + [answer, ""])
def generate_mcqs_from_paragraph(paragraph, num_questions=5):
"""Generate and format MCQs from a paragraph"""
generator = ImprovedMCQGenerator()
mcqs = generator.generate_mcqs(paragraph, num_questions)
formatted_mcqs = []
for i, mcq in enumerate(mcqs):
formatted_mcqs.append(format_mcq(mcq, i))
return "\n".join(formatted_mcqs)
# Example paragraphs
example_paragraphs = [
"""
The cell is the basic structural and functional unit of all living organisms. Cells can be classified into two main types: prokaryotic and eukaryotic.
Prokaryotic cells, found in bacteria and archaea, lack a defined nucleus and membrane-bound organelles. In contrast, eukaryotic cells, which make up plants,
animals, fungi, and protists, contain a nucleus that houses the cell’s DNA, as well as various organelles like mitochondria and the endoplasmic reticulum.
The cell membrane regulates the movement of substances in and out of the cell, while the cytoplasm supports the internal structures.
""",
"""
The Industrial Revolution was a major historical transformation that began in Great Britain in the late 18th century. It marked the shift from manual labor and
hand-made goods to machine-based manufacturing and mass production. This shift significantly increased productivity and efficiency. The textile industry was the
first to implement modern industrial methods, including the use of spinning machines and mechanized looms. A key innovation during this period was the development
of steam power, notably improved by Scottish engineer James Watt. Steam engines enabled factories to operate away from rivers, which had previously been the main
power source. Additional advancements included the invention of machine tools and the emergence of large-scale factory systems. These changes revolutionized industrial
labor and contributed to the rise of new social classes, including the industrial working class and the capitalist class. The Industrial Revolution also led to rapid
urbanization, a sharp rise in population, and eventually, improvements in living standards and economic growth.
"""
]
# Main execution
if __name__ == "__main__":
print("MCQ Generator - Testing with Example Paragraphs")
print("=" * 80)
for i, paragraph in enumerate(example_paragraphs):
print(f"\nExample {i + 1}:")
print("-" * 40)
if is_suitable_for_students(paragraph):
print(generate_mcqs_from_paragraph(paragraph))
else:
print("❌ Content not suitable for MCQ generation. Please provide different content.")
print("=" * 80)
# Interactive mode
print("\n--- MCQ Generator ---")
print("Enter a paragraph to generate MCQs (or type 'exit' to quit):")
while True:
user_input = input("> ")
if user_input.lower() == 'exit':
break
if is_suitable_for_students(user_input):
print(generate_mcqs_from_paragraph(user_input))
else:
print("❌ Content not suitable for MCQ generation. Please provide different content.")
"""#Performance Metrics
"""
import time
import psutil
import numpy as np
from nltk.translate.bleu_score import sentence_bleu, SmoothingFunction
from rouge import Rouge
import matplotlib.pyplot as plt
try:
from IPython.display import display
except ImportError:
# Create a dummy display function for non-notebook environments
def display(obj):
pass
import pandas as pd
from nltk.tokenize import sent_tokenize
import tracemalloc
import gc
import re
import random
import warnings
from sklearn.metrics.pairwise import cosine_similarity
from sklearn.feature_extraction.text import TfidfVectorizer
class MCQPerformanceMetrics:
def __init__(self, mcq_generator):
"""Initialize the performance metrics class with the MCQ generator"""
self.mcq_generator = mcq_generator
self.rouge = Rouge()
# Initialize NLTK smoothing function to handle zero counts
self.smoothing = SmoothingFunction().method1
# For semantic similarity
self.tfidf_vectorizer = TfidfVectorizer(stop_words='english')
def measure_execution_time(self, paragraphs, num_questions=5, repetitions=3):
"""Measure execution time for generating MCQs"""
execution_times = []
questions_per_second = []
for paragraph in paragraphs:
paragraph_times = []
for _ in range(repetitions):
start_time = time.time()
mcqs = self.mcq_generator.generate_mcqs(paragraph, num_questions)
end_time = time.time()
execution_time = end_time - start_time
paragraph_times.append(execution_time)
# Calculate questions per second
if len(mcqs) > 0:
qps = len(mcqs) / execution_time
questions_per_second.append(qps)
execution_times.append(np.mean(paragraph_times))
return {
'avg_execution_time': np.mean(execution_times),
'min_execution_time': np.min(execution_times),
'max_execution_time': np.max(execution_times),
'avg_questions_per_second': np.mean(questions_per_second) if questions_per_second else 0
}
def measure_memory_usage(self, paragraph, num_questions=5):
"""Measure peak memory usage during MCQ generation"""
# Clear memory before test
gc.collect()
# Start memory tracking
tracemalloc.start()
# Generate MCQs
self.mcq_generator.generate_mcqs(paragraph, num_questions)
# Get peak memory usage
current, peak = tracemalloc.get_traced_memory()
# Stop tracking
tracemalloc.stop()
return {
'current_memory_MB': current / (1024 * 1024),
'peak_memory_MB': peak / (1024 * 1024)
}
def compute_semantic_similarity(self, text1, text2):
"""Compute semantic similarity between two texts using TF-IDF and cosine similarity"""
try:
# Handle empty strings
if not text1.strip() or not text2.strip():
return 0
# Fit and transform the texts
tfidf_matrix = self.tfidf_vectorizer.fit_transform([text1, text2])
# Compute cosine similarity
similarity = cosine_similarity(tfidf_matrix[0:1], tfidf_matrix[1:2])[0][0]
return similarity
except Exception as e:
print(f"Error computing semantic similarity: {e}")
return 0
def evaluate_question_quality(self, mcqs, reference_questions=None):
"""Evaluate the quality of generated questions with improved reference handling"""
if not mcqs:
return {'avg_question_length': 0, 'has_question_mark': 0}
# Basic metrics
question_lengths = [len(mcq['question'].split()) for mcq in mcqs]
has_question_mark = [int(mcq['question'].endswith('?')) for mcq in mcqs]
# Option distinctiveness - average cosine distance between options
option_distinctiveness = []
for mcq in mcqs:
options = mcq['options']
if len(options) < 2:
continue
# Enhanced distinctiveness calculation using TF-IDF and cosine similarity
distinctiveness_scores = []
for i in range(len(options)):
for j in range(i+1, len(options)):
if not options[i].strip() or not options[j].strip():
continue
# Calculate semantic similarity between options
similarity = self.compute_semantic_similarity(options[i], options[j])
distinctiveness_scores.append(1 - similarity) # Higher is better (more distinct)
if distinctiveness_scores:
option_distinctiveness.append(np.mean(distinctiveness_scores))
# Compare with reference questions if provided
bleu_scores = []
modified_bleu_scores = [] # Using smoothing function
rouge_scores = {'rouge-1': [], 'rouge-2': [], 'rouge-l': []}
semantic_similarities = [] # New metric for semantic similarity
if reference_questions and len(reference_questions) > 0:
# Print debug info
print(f"Number of MCQs: {len(mcqs)}")
print(f"Number of reference questions: {len(reference_questions)}")
# Align MCQs with reference questions based on semantic similarity
aligned_pairs = []
if len(mcqs) <= len(reference_questions):
# If we have enough reference questions, find the best match for each MCQ
for mcq in mcqs:
best_match_idx = -1
best_similarity = -1
for i, ref in enumerate(reference_questions):
if i in [pair[1] for pair in aligned_pairs]:
continue # Skip already matched references
similarity = self.compute_semantic_similarity(
mcq['question'],
ref if isinstance(ref, str) else ""
)
if similarity > best_similarity:
best_similarity = similarity
best_match_idx = i
if best_match_idx >= 0:
aligned_pairs.append((mcq, best_match_idx))
else:
# If no match found, use the first available reference
for i, ref in enumerate(reference_questions):
if i not in [pair[1] for pair in aligned_pairs]:
aligned_pairs.append((mcq, i))
break
else:
# If we have more MCQs than references, match each reference to its best MCQ
used_mcqs = set()
for i, ref in enumerate(reference_questions):
best_match_idx = -1
best_similarity = -1
for j, mcq in enumerate(mcqs):
if j in used_mcqs:
continue # Skip already matched MCQs
similarity = self.compute_semantic_similarity(
mcq['question'],
ref if isinstance(ref, str) else ""
)
if similarity > best_similarity:
best_similarity = similarity
best_match_idx = j
if best_match_idx >= 0:
aligned_pairs.append((mcqs[best_match_idx], i))
used_mcqs.add(best_match_idx)
# Add remaining MCQs with cycling through references
for i, mcq in enumerate(mcqs):
if i not in used_mcqs:
ref_idx = i % len(reference_questions)
aligned_pairs.append((mcq, ref_idx))
# Calculate metrics for aligned pairs
for mcq, ref_idx in aligned_pairs:
reference = reference_questions[ref_idx] if isinstance(reference_questions[ref_idx], str) else ""
if not reference:
continue
ref_tokens = reference.split()
hyp_tokens = mcq['question'].split()
# Debug output
print(f"\nReference ({ref_idx}): {reference}")
print(f"Generated: {mcq['question']}")
# Calculate semantic similarity
sem_sim = self.compute_semantic_similarity(mcq['question'], reference)
semantic_similarities.append(sem_sim)
print(f"Semantic similarity: {sem_sim:.4f}")
try:
with warnings.catch_warnings():
warnings.simplefilter("ignore")
# Standard BLEU
bleu_score = sentence_bleu([ref_tokens], hyp_tokens, weights=(0.25, 0.25, 0.25, 0.25))
bleu_scores.append(bleu_score)
# BLEU with smoothing to handle zero counts
modified_bleu = sentence_bleu(
[ref_tokens],
hyp_tokens,
weights=(0.25, 0.25, 0.25, 0.25),
smoothing_function=self.smoothing
)
modified_bleu_scores.append(modified_bleu)
print(f"Smoothed BLEU: {modified_bleu:.4f}")
except Exception as e:
print(f"BLEU score calculation error: {e}")
# ROUGE scores
try:
if len(reference) > 0 and len(mcq['question']) > 0:
rouge_result = self.rouge.get_scores(mcq['question'], reference)[0]
rouge_scores['rouge-1'].append(rouge_result['rouge-1']['f'])
rouge_scores['rouge-2'].append(rouge_result['rouge-2']['f'])
rouge_scores['rouge-l'].append(rouge_result['rouge-l']['f'])
print(f"ROUGE-1: {rouge_result['rouge-1']['f']:.4f}, ROUGE-L: {rouge_result['rouge-l']['f']:.4f}")
except Exception as e:
print(f"ROUGE score calculation error: {e}")
results = {
'avg_question_length': np.mean(question_lengths),
'has_question_mark': np.mean(has_question_mark) * 100, # as percentage
'option_distinctiveness': np.mean(option_distinctiveness) if option_distinctiveness else 0
}
if modified_bleu_scores:
results['avg_smoothed_bleu_score'] = np.mean(modified_bleu_scores)
if semantic_similarities:
results['avg_semantic_similarity'] = np.mean(semantic_similarities)
for rouge_type, scores in rouge_scores.items():
if scores:
results[f'avg_{rouge_type}'] = np.mean(scores)
return results
def analyze_distractor_quality(self, mcqs, context):
"""Analyze the quality of distractors with improved semantic analysis"""
if not mcqs:
return {}
# Check if distractor is in context
context_presence = []
semantic_relevance = [] # New metric for semantic relevance to context
for mcq in mcqs:
try:
correct_answer = mcq['options'][mcq['answer_index']]
distractors = [opt for i, opt in enumerate(mcq['options']) if i != mcq['answer_index']]
distractor_in_context = []
distractor_semantic_relevance = []
for distractor in distractors:
# Check semantic relevance to context
semantic_sim = self.compute_semantic_similarity(distractor, context)
distractor_semantic_relevance.append(semantic_sim)
# Traditional word overlap check
distractor_words = set(distractor.lower().split())
context_words = set(context.lower().split())
if distractor_words:
overlap_ratio = len(distractor_words.intersection(context_words)) / len(distractor_words)
distractor_in_context.append(overlap_ratio >= 0.5) # At least 50% of words in context
if distractor_in_context:
context_presence.append(sum(distractor_in_context) / len(distractor_in_context))
if distractor_semantic_relevance:
semantic_relevance.append(np.mean(distractor_semantic_relevance))
except Exception as e:
print(f"Error in distractor context analysis: {e}")
# Calculate semantic similarity between distractors and correct answer
distractor_answer_similarity = []
distractor_plausibility = [] # New metric for plausibility
for mcq in mcqs:
try:
correct_answer = mcq['options'][mcq['answer_index']]
distractors = [opt for i, opt in enumerate(mcq['options']) if i != mcq['answer_index']]
similarities = []
plausibility_scores = []
for distractor in distractors:
# Semantic similarity
similarity = self.compute_semantic_similarity(correct_answer, distractor)
similarities.append(similarity)
# Plausibility - should be somewhat similar to correct answer but not too similar
# Sweet spot is around 0.3-0.7 similarity
plausibility = 1.0 - abs(0.5 - similarity) # 1.0 at 0.5 similarity, decreasing on both sides
plausibility_scores.append(plausibility)
if similarities:
distractor_answer_similarity.append(np.mean(similarities))
if plausibility_scores:
distractor_plausibility.append(np.mean(plausibility_scores))
except Exception as e:
print(f"Error in distractor similarity analysis: {e}")
results = {
'context_presence': np.mean(context_presence) * 100 if context_presence else 0, # as percentage
'distractor_answer_similarity': np.mean(distractor_answer_similarity) * 100 if distractor_answer_similarity else 0 # as percentage
}
# Add new metrics
if semantic_relevance:
results['distractor_semantic_relevance'] = np.mean(semantic_relevance)
if distractor_plausibility:
results['distractor_plausibility'] = np.mean(distractor_plausibility)
return results
def calculate_readability_scores(self, mcqs):
"""Calculate readability scores for questions"""
try:
import textstat
has_textstat = True
except ImportError:
has_textstat = False
print("textstat package not found - readability metrics will be skipped")
return {}
if not has_textstat or not mcqs:
return {}
readability_scores = {
'flesch_reading_ease': [],
'flesch_kincaid_grade': [],
'automated_readability_index': [],
'smog_index': [], # Added SMOG Index
'coleman_liau_index': [] # Added Coleman-Liau Index
}
for mcq in mcqs:
question_text = mcq['question']
# Add options to create full MCQ text for readability analysis
full_mcq_text = question_text + "\n"
for i, option in enumerate(mcq['options']):
full_mcq_text += f"{chr(65+i)}. {option}\n"
try:
readability_scores['flesch_reading_ease'].append(textstat.flesch_reading_ease(full_mcq_text))
readability_scores['flesch_kincaid_grade'].append(textstat.flesch_kincaid_grade(full_mcq_text))
readability_scores['automated_readability_index'].append(textstat.automated_readability_index(full_mcq_text))
readability_scores['smog_index'].append(textstat.smog_index(full_mcq_text))
readability_scores['coleman_liau_index'].append(textstat.coleman_liau_index(full_mcq_text))
except Exception as e:
print(f"Error calculating readability: {e}")
result = {}
for metric, scores in readability_scores.items():
if scores:
result[f'avg_{metric}'] = np.mean(scores)
return result
def evaluate_question_diversity(self, mcqs):
"""Evaluate the diversity of questions generated"""
if not mcqs or len(mcqs) < 2:
return {'question_diversity': 0}
# Calculate pairwise similarity between questions
similarities = []
for i in range(len(mcqs)):
for j in range(i+1, len(mcqs)):
similarity = self.compute_semantic_similarity(mcqs[i]['question'], mcqs[j]['question'])
similarities.append(similarity)
# Diversity is inverse of average similarity
avg_similarity = np.mean(similarities) if similarities else 0
diversity = 1 - avg_similarity
return {'question_diversity': diversity}
def evaluate_contextual_relevance(self, mcqs, context):
"""Evaluate how relevant questions are to the context"""
if not mcqs:
return {'contextual_relevance': 0}
relevance_scores = []
for mcq in mcqs:
# Calculate similarity between question and context
similarity = self.compute_semantic_similarity(mcq['question'], context)
relevance_scores.append(similarity)
return {'contextual_relevance': np.mean(relevance_scores) if relevance_scores else 0}
def evaluate(self, paragraphs, num_questions=5, reference_questions=None):
"""Run a comprehensive evaluation of the MCQ generator"""
try:
# Get one set of MCQs for quality evaluation
sample_paragraph = paragraphs[0] if isinstance(paragraphs, list) else paragraphs
sample_mcqs = self.mcq_generator.generate_mcqs(sample_paragraph, num_questions)
print(f"Generated {len(sample_mcqs)} MCQs for evaluation")
# Execution time
timing_metrics = self.measure_execution_time(
paragraphs if isinstance(paragraphs, list) else [paragraphs],
num_questions
)
# Memory usage
memory_metrics = self.measure_memory_usage(sample_paragraph, num_questions)
# Question quality
quality_metrics = self.evaluate_question_quality(sample_mcqs, reference_questions)
# Distractor quality
distractor_metrics = self.analyze_distractor_quality(sample_mcqs, sample_paragraph)
# Readability metrics
readability_metrics = self.calculate_readability_scores(sample_mcqs)
# New metrics
diversity_metrics = self.evaluate_question_diversity(sample_mcqs)
relevance_metrics = self.evaluate_contextual_relevance(sample_mcqs, sample_paragraph)
# Combine all metrics
all_metrics = {
**timing_metrics,
**memory_metrics,
**quality_metrics,
**distractor_metrics,
**readability_metrics,
**diversity_metrics,
**relevance_metrics
}
return all_metrics
except Exception as e:
print(f"Error during evaluation: {e}")
import traceback
traceback.print_exc()
return {"error": str(e)}
def visualize_results(self, metrics):
"""Visualize the evaluation results with enhanced charts"""
try:
# Create a dataframe for better display
metrics_df = pd.DataFrame({k: [v] for k, v in metrics.items()})
# Format the numbers
for col in metrics_df.columns:
if 'time' in col:
metrics_df[col] = metrics_df[col].round(2).astype(str) + ' sec'
elif 'memory' in col:
metrics_df[col] = metrics_df[col].round(2).astype(str) + ' MB'
elif col in ['has_question_mark', 'context_presence', 'distractor_answer_similarity']:
metrics_df[col] = metrics_df[col].round(1).astype(str) + '%'
else:
metrics_df[col] = metrics_df[col].round(3)
display(metrics_df.T.rename(columns={0: 'Value'}))
# Create enhanced visualizations
fig = plt.figure(figsize=(16, 14))
# Create 3 rows, 2 columns for more organized charts
gs = fig.add_gridspec(3, 2)
# Filter out metrics that shouldn't be plotted
plottable_metrics = {k: v for k, v in metrics.items() if isinstance(v, (int, float))}
# 1. Performance Metrics
ax1 = fig.add_subplot(gs[0, 0])
performance_keys = ['avg_execution_time', 'avg_questions_per_second']
performance_metrics = [plottable_metrics.get(k, 0) for k in performance_keys]
bars = ax1.bar(performance_keys, performance_metrics, color=['#3498db', '#2ecc71'])
ax1.set_title('Performance Metrics', fontsize=14, fontweight='bold')
ax1.set_xticklabels(performance_keys, rotation=45, ha='right')
# Add value labels on bars
for bar in bars:
height = bar.get_height()
ax1.text(bar.get_x() + bar.get_width()/2., height + 0.1,
f'{height:.2f}', ha='center', va='bottom')
# 2. Memory Usage
ax2 = fig.add_subplot(gs[0, 1])
memory_keys = ['current_memory_MB', 'peak_memory_MB']
memory_metrics = [plottable_metrics.get(k, 0) for k in memory_keys]
bars = ax2.bar(memory_keys, memory_metrics, color=['#9b59b6', '#34495e'])
ax2.set_title('Memory Usage (MB)', fontsize=14, fontweight='bold')
# Add value labels
for bar in bars:
height = bar.get_height()
ax2.text(bar.get_x() + bar.get_width()/2., height + 0.01,
f'{height:.2f}', ha='center', va='bottom')
# 3. Question Quality
ax3 = fig.add_subplot(gs[1, 0])
quality_keys = ['avg_question_length', 'has_question_mark', 'option_distinctiveness',
'question_diversity', 'contextual_relevance']
quality_metrics = [
plottable_metrics.get('avg_question_length', 0),
plottable_metrics.get('has_question_mark', 0) / 100, # Convert from percentage
plottable_metrics.get('option_distinctiveness', 0),
plottable_metrics.get('question_diversity', 0),
plottable_metrics.get('contextual_relevance', 0)
]
bars = ax3.bar(['Avg Length', 'Question Mark', 'Option Distinct.', 'Diversity', 'Relevance'],
quality_metrics, color=['#f39c12', '#d35400', '#c0392b', '#16a085', '#27ae60'])
ax3.set_title('Question Quality Metrics', fontsize=14, fontweight='bold')
ax3.set_xticklabels(['Avg Length', 'Question Mark', 'Option Distinct.', 'Diversity', 'Relevance'],
rotation=45, ha='right')
# Add value labels
for bar in bars:
height = bar.get_height()
ax3.text(bar.get_x() + bar.get_width()/2., height + 0.01,
f'{height:.2f}', ha='center', va='bottom')
# 4. Distractor Quality
ax4 = fig.add_subplot(gs[1, 1])
distractor_keys = ['context_presence', 'distractor_answer_similarity',
'distractor_semantic_relevance', 'distractor_plausibility']
distractor_metrics = [
plottable_metrics.get('context_presence', 0) / 100, # Convert from percentage
plottable_metrics.get('distractor_answer_similarity', 0) / 100, # Convert from percentage
plottable_metrics.get('distractor_semantic_relevance', 0),
plottable_metrics.get('distractor_plausibility', 0)
]
bars = ax4.bar(['Context', 'Answer Sim.', 'Semantic Rel.', 'Plausibility'],
distractor_metrics, color=['#1abc9c', '#e74c3c', '#3498db', '#f1c40f'])
ax4.set_title('Distractor Quality Metrics', fontsize=14, fontweight='bold')
ax4.set_xticklabels(['Context', 'Answer Sim.', 'Semantic Rel.', 'Plausibility'],
rotation=45, ha='right')
# Add value labels
for bar in bars:
height = bar.get_height()
ax4.text(bar.get_x() + bar.get_width()/2., height + 0.01,
f'{height:.2f}', ha='center', va='bottom')
# 5. NLP Metrics
ax5 = fig.add_subplot(gs[2, 0])
nlp_keys = ['avg_smoothed_bleu_score', 'avg_semantic_similarity',
'avg_rouge-1', 'avg_rouge-2', 'avg_rouge-l']
nlp_metrics = [
plottable_metrics.get('avg_smoothed_bleu_score', 0),
plottable_metrics.get('avg_semantic_similarity', 0),
plottable_metrics.get('avg_rouge-1', 0),
plottable_metrics.get('avg_rouge-2', 0),
plottable_metrics.get('avg_rouge-l', 0)
]
bars = ax5.bar(['Smooth BLEU', 'Semantic', 'ROUGE-1', 'ROUGE-2', 'ROUGE-L'],
nlp_metrics, color=['#3498db', '#2980b9', '#9b59b6', '#e74c3c', '#c0392b', '#d35400'])
ax5.set_title('NLP Evaluation Metrics', fontsize=14, fontweight='bold')
ax5.set_xticklabels(['Smooth BLEU', 'Semantic', 'ROUGE-1', 'ROUGE-2', 'ROUGE-L'],
rotation=45, ha='right')
# Add value labels
for bar in bars:
height = bar.get_height()
ax5.text(bar.get_x() + bar.get_width()/2., height + 0.01,
f'{height:.3f}', ha='center', va='bottom')
# 6. Readability Metrics
ax6 = fig.add_subplot(gs[2, 1])
readability_keys = ['avg_flesch_reading_ease', 'avg_flesch_kincaid_grade',
'avg_automated_readability_index', 'avg_smog_index', 'avg_coleman_liau_index']
readability_metrics = [
plottable_metrics.get('avg_flesch_reading_ease', 0),
plottable_metrics.get('avg_flesch_kincaid_grade', 0),
plottable_metrics.get('avg_automated_readability_index', 0),
plottable_metrics.get('avg_smog_index', 0),
plottable_metrics.get('avg_coleman_liau_index', 0)
]
bars = ax6.bar(['Flesch Ease', 'Kincaid', 'ARI', 'SMOG', 'Coleman-Liau'],
readability_metrics, color=['#27ae60', '#2ecc71', '#16a085', '#1abc9c', '#2980b9'])
ax6.set_title('Readability Metrics', fontsize=14, fontweight='bold')
ax6.set_xticklabels(['Flesch Ease', 'Kincaid', 'ARI', 'SMOG', 'Coleman-Liau'],
rotation=45, ha='right')
# Add value labels
for bar in bars:
height = bar.get_height()
ax6.text(bar.get_x() + bar.get_width()/2., height + 0.1,
f'{height:.2f}', ha='center', va='bottom')
plt.tight_layout()
plt.show()
return fig
except Exception as e:
print(f"Error in visualization: {e}")
import traceback
traceback.print_exc()
# Example usage function with improved error handling
def run_performance_evaluation():
# Import the MCQ generator
try:
# First try to import from the module
from improved_mcq_generator import ImprovedMCQGenerator
except ImportError:
# If that fails, try to load the class from current namespace
try:
# This assumes the class is defined in the current session
ImprovedMCQGenerator = globals().get('ImprovedMCQGenerator')
if ImprovedMCQGenerator is None:
raise ImportError("ImprovedMCQGenerator class not found")
except Exception as e:
print(f"Error importing ImprovedMCQGenerator: {e}")
return
# Test paragraphs - use a variety for better assessment
test_paragraphs = [
"""The cell is the basic structural and functional unit of all living organisms. Cells can be classified into two main types: prokaryotic and eukaryotic.
Prokaryotic cells, found in bacteria and archaea, lack a defined nucleus and membrane-bound organelles. In contrast, eukaryotic cells, which make up plants,
animals, fungi, and protists, contain a nucleus that houses the cell’s DNA, as well as various organelles like mitochondria and the endoplasmic reticulum.
The cell membrane regulates the movement of substances in and out of the cell, while the cytoplasm supports the internal structures."""
]
# Reference questions for comparison (optional)
reference_questions = [
"What do prokaryotic cells lack?",
"Which cell structures are missing in prokaryotic cells compared to eukaryotic cells?",
"What type of cells are found in bacteria and archaea?",
"What is the basic structural and functional unit of all living organisms?",
"What controls the movement of substances in and out of a cell?"
]
try:
# Initialize the MCQ generator
mcq_generator = ImprovedMCQGenerator()
# Initialize performance metrics
metrics_evaluator = MCQPerformanceMetrics(mcq_generator)
# Run evaluation
print("Running performance evaluation...")
results = metrics_evaluator.evaluate(test_paragraphs, num_questions=5, reference_questions=reference_questions)
# Visualize results
metrics_evaluator.visualize_results(results)
# Print detailed results
print("\nDetailed Performance Metrics:")
for metric, value in results.items():
# Format the value based on metric type
if isinstance(value, (int, float)):
if 'time' in metric:
print(f"{metric}: {value:.2f} seconds")
elif 'memory' in metric:
print(f"{metric}: {value:.2f} MB")
elif metric in ['has_question_mark', 'context_presence', 'distractor_answer_similarity']:
print(f"{metric}: {value:.1f}%")
else:
print(f"{metric}: {value:.3f}")
else:
print(f"{metric}: {value}")
except Exception as e:
print(f"Error in performance evaluation: {e}")
import traceback
traceback.print_exc()
if __name__ == "__main__":
run_performance_evaluation() |