Spaces:
Running
on
T4
Running
on
T4
Update app.py
Browse files
app.py
CHANGED
@@ -3,7 +3,7 @@ import torch
|
|
3 |
import numpy as np
|
4 |
import modin.pandas as pd
|
5 |
from PIL import Image
|
6 |
-
from diffusers import DiffusionPipeline
|
7 |
from huggingface_hub import hf_hub_download
|
8 |
|
9 |
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
@@ -52,9 +52,24 @@ def genie (Model, Prompt, negative_prompt, height, width, scale, steps, seed):
|
|
52 |
image = pipe(Prompt, negative_prompt=negative_prompt, image=int_image, denoising_start=.99).images[0]
|
53 |
torch.cuda.empty_cache()
|
54 |
return image
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
55 |
return image
|
56 |
|
57 |
-
gr.Interface(fn=genie, inputs=[gr.Radio(['PhotoReal', 'Animagine XL 4', "FXL"], value='PhotoReal', label='Choose Model'),
|
58 |
gr.Textbox(label='What you want the AI to generate. 77 Token Limit.'),
|
59 |
gr.Textbox(label='What you Do Not want the AI to generate. 77 Token Limit'),
|
60 |
gr.Slider(512, 1024, 768, step=128, label='Height'),
|
|
|
3 |
import numpy as np
|
4 |
import modin.pandas as pd
|
5 |
from PIL import Image
|
6 |
+
from diffusers import DiffusionPipeline, StableDiffusion3Pipeline
|
7 |
from huggingface_hub import hf_hub_download
|
8 |
|
9 |
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
|
|
52 |
image = pipe(Prompt, negative_prompt=negative_prompt, image=int_image, denoising_start=.99).images[0]
|
53 |
torch.cuda.empty_cache()
|
54 |
return image
|
55 |
+
if Model == "SD3.5":
|
56 |
+
torch.cuda.max_memory_allocated(device=device)
|
57 |
+
torch.cuda.empty_cache()
|
58 |
+
pipe = StableDiffusion3Pipeline.from_pretrained("stabilityai/stable-diffusion-3.5-medium", torch_dtype=torch.float16).to(device)
|
59 |
+
pipe.enable_xformers_memory_efficient_attention()
|
60 |
+
torch.cuda.empty_cache()
|
61 |
+
image = pipe(
|
62 |
+
prompt=Prompt,
|
63 |
+
height=height,
|
64 |
+
width=width,
|
65 |
+
negative_prompt=negative_prompt,
|
66 |
+
guidance_scale=scale,
|
67 |
+
num_images_per_prompt=1,
|
68 |
+
num_inference_steps=steps).images[0]
|
69 |
+
torch.cuda.empty_cache()
|
70 |
return image
|
71 |
|
72 |
+
gr.Interface(fn=genie, inputs=[gr.Radio(['PhotoReal', 'Animagine XL 4', "FXL", "SD3.5"], value='PhotoReal', label='Choose Model'),
|
73 |
gr.Textbox(label='What you want the AI to generate. 77 Token Limit.'),
|
74 |
gr.Textbox(label='What you Do Not want the AI to generate. 77 Token Limit'),
|
75 |
gr.Slider(512, 1024, 768, step=128, label='Height'),
|