Manjushri commited on
Commit
9534132
·
verified ·
1 Parent(s): 1dab3e0

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +4 -4
app.py CHANGED
@@ -20,7 +20,7 @@ def genie (Model, Prompt, negative_prompt, height, width, scale, steps, seed):
20
  pipe = pipe.to(device)
21
  torch.cuda.empty_cache()
22
 
23
- image = pipe(Prompt, negative_prompt=negative_prompt, height=height, width=width, num_inference_steps=steps, guidance_scale=scale).images[0]
24
  torch.cuda.empty_cache()
25
  return image
26
 
@@ -31,7 +31,7 @@ def genie (Model, Prompt, negative_prompt, height, width, scale, steps, seed):
31
  animagine = animagine.to(device)
32
  torch.cuda.empty_cache()
33
 
34
- image = animagine(Prompt, negative_prompt=negative_prompt, height=height, width=width, num_inference_steps=steps, guidance_scale=scale).images[0]
35
  torch.cuda.empty_cache()
36
  return image
37
  if Model == "FXL":
@@ -44,12 +44,12 @@ def genie (Model, Prompt, negative_prompt, height, width, scale, steps, seed):
44
  torch.cuda.empty_cache()
45
 
46
  #torch.cuda.max_memory_allocated(device=device)
47
- int_image = pipe(Prompt, negative_prompt=negative_prompt, height=height, width=width, num_inference_steps=steps, guidance_scale=scale, output_type="latent").images
48
  pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-refiner-1.0", use_safetensors=True, torch_dtype=torch.float16, variant="fp16") if torch.cuda.is_available() else DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-refiner-1.0")
49
  pipe.enable_xformers_memory_efficient_attention()
50
  pipe = pipe.to(device)
51
  torch.cuda.empty_cache()
52
- image = pipe(Prompt, negative_prompt=negative_prompt, image=int_image, denoising_start=.99).images[0]
53
  torch.cuda.empty_cache()
54
  return image
55
 
 
20
  pipe = pipe.to(device)
21
  torch.cuda.empty_cache()
22
 
23
+ image = pipe(Prompt, negative_prompt=negative_prompt, height=height, width=width, num_inference_steps=steps, guidance_scale=scale, max_sequence_length=512).images[0]
24
  torch.cuda.empty_cache()
25
  return image
26
 
 
31
  animagine = animagine.to(device)
32
  torch.cuda.empty_cache()
33
 
34
+ image = animagine(Prompt, negative_prompt=negative_prompt, height=height, width=width, num_inference_steps=steps, guidance_scale=scale, max_sequence_length=512).images[0]
35
  torch.cuda.empty_cache()
36
  return image
37
  if Model == "FXL":
 
44
  torch.cuda.empty_cache()
45
 
46
  #torch.cuda.max_memory_allocated(device=device)
47
+ int_image = pipe(Prompt, negative_prompt=negative_prompt, height=height, width=width, num_inference_steps=steps, guidance_scale=scale, max_sequence_length=512, output_type="latent").images
48
  pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-refiner-1.0", use_safetensors=True, torch_dtype=torch.float16, variant="fp16") if torch.cuda.is_available() else DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-refiner-1.0")
49
  pipe.enable_xformers_memory_efficient_attention()
50
  pipe = pipe.to(device)
51
  torch.cuda.empty_cache()
52
+ image = pipe(Prompt, negative_prompt=negative_prompt, image=int_image, denoising_start=.99, max_sequence_length=512).images[0]
53
  torch.cuda.empty_cache()
54
  return image
55