Manjushri commited on
Commit
8b28b93
·
verified ·
1 Parent(s): f779a05

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +27 -19
app.py CHANGED
@@ -3,36 +3,44 @@ import torch
3
  import numpy as np
4
  import modin.pandas as pd
5
  from PIL import Image
6
- from diffusers import FluxPipeline
7
  from huggingface_hub import hf_hub_download
8
 
9
  device = 'cuda' if torch.cuda.is_available() else 'cpu'
10
  torch.cuda.max_memory_allocated(device=device)
11
  torch.cuda.empty_cache()
12
- pipe = FluxPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=torch.bfloat16)
13
 
14
- # Open it for reduce GPU memory usage
15
- pipe.enable_model_cpu_offload()
16
- pipe.vae.enable_slicing()
17
- pipe.vae.enable_tiling()
18
-
19
- def genie (Model, Prompt, negative_prompt, scale, steps, seed):
20
- generator = np.random.seed(0) #if seed == 0 else torch.manual_seed(seed)
21
 
22
- image = pipe(
23
- prompt=Prompt, negative_prompt=negative_prompt,
24
- guidance_scale=scale,
25
- num_images_per_prompt=1,
26
- num_inference_steps=steps,
27
- width=1024,
28
- height=1024, generator=generator).images[0]
 
 
 
 
 
 
 
 
 
 
 
 
29
 
 
30
  return image
31
 
32
- gr.Interface(fn=genie, inputs=[gr.Textbox(label='What you want the AI to generate. 77 Token Limit.'),
 
33
  gr.Textbox(label='What you Do Not want the AI to generate. 77 Token Limit'),
34
- #gr.Slider(512, 1024, 768, step=128, label='Height'),
35
- #gr.Slider(512, 1024, 768, step=128, label='Width'),
36
  gr.Slider(3, maximum=12, value=5, step=.25, label='Guidance Scale', info="5-7 for PhotoReal and 7-10 for Animagine"),
37
  gr.Slider(25, maximum=50, value=25, step=25, label='Number of Iterations'),
38
  gr.Slider(minimum=0, step=1, maximum=9999999999999999, randomize=True, label='Seed: 0 is Random'),
 
3
  import numpy as np
4
  import modin.pandas as pd
5
  from PIL import Image
6
+ from diffusers import DiffusionPipeline #, StableDiffusion3Pipeline
7
  from huggingface_hub import hf_hub_download
8
 
9
  device = 'cuda' if torch.cuda.is_available() else 'cpu'
10
  torch.cuda.max_memory_allocated(device=device)
11
  torch.cuda.empty_cache()
 
12
 
13
+ def genie (Model, Prompt, negative_prompt, height, width, scale, steps, seed):
14
+ generator = np.random.seed(0) if seed == 0 else torch.manual_seed(seed)
 
 
 
 
 
15
 
16
+ if Model == "PhotoReal":
17
+ pipe = DiffusionPipeline.from_pretrained("circulus/canvers-real-v3.9.1", torch_dtype=torch.float16, safety_checker=None) if torch.cuda.is_available() else DiffusionPipeline.from_pretrained("circulus/canvers-real-v3.9.1")
18
+ pipe.enable_xformers_memory_efficient_attention()
19
+ pipe = pipe.to(device)
20
+ torch.cuda.empty_cache()
21
+
22
+ image = pipe(Prompt, negative_prompt=negative_prompt, height=height, width=width, num_inference_steps=steps, guidance_scale=scale).images[0]
23
+ torch.cuda.empty_cache()
24
+ return image
25
+
26
+ if Model == "Animagine XL 4":
27
+ animagine = DiffusionPipeline.from_pretrained("cagliostrolab/animagine-xl-4.0", torch_dtype=torch.float16, safety_checker=None) if torch.cuda.is_available() else DiffusionPipeline.from_pretrained("cagliostrolab/animagine-xl-4.0")
28
+ animagine.enable_xformers_memory_efficient_attention()
29
+ animagine = animagine.to(device)
30
+ torch.cuda.empty_cache()
31
+
32
+ image = animagine(Prompt, negative_prompt=negative_prompt, height=height, width=width, num_inference_steps=steps, guidance_scale=scale).images[0]
33
+ torch.cuda.empty_cache()
34
+ return image
35
 
36
+
37
  return image
38
 
39
+ gr.Interface(fn=genie, inputs=[gr.Radio(['PhotoReal', 'Animagine XL 4',], value='PhotoReal', label='Choose Model'),
40
+ gr.Textbox(label='What you want the AI to generate. 77 Token Limit.'),
41
  gr.Textbox(label='What you Do Not want the AI to generate. 77 Token Limit'),
42
+ gr.Slider(512, 1024, 768, step=128, label='Height'),
43
+ gr.Slider(512, 1024, 768, step=128, label='Width'),
44
  gr.Slider(3, maximum=12, value=5, step=.25, label='Guidance Scale', info="5-7 for PhotoReal and 7-10 for Animagine"),
45
  gr.Slider(25, maximum=50, value=25, step=25, label='Number of Iterations'),
46
  gr.Slider(minimum=0, step=1, maximum=9999999999999999, randomize=True, label='Seed: 0 is Random'),