Spaces:
Running
on
T4
Running
on
T4
import gradio as gr | |
import torch | |
import numpy as np | |
import modin.pandas as pd | |
from PIL import Image | |
from diffusers import StableDiffusion3Pipeline #DiffusionPipeline #, StableDiffusion3Pipeline | |
from huggingface_hub import hf_hub_download | |
from diffusers import BitsAndBytesConfig, SD3Transformer2DModel | |
device = 'cuda' if torch.cuda.is_available() else 'cpu' | |
torch.cuda.max_memory_allocated(device=device) | |
torch.cuda.empty_cache() | |
model_id = "stabilityai/stable-diffusion-3.5-large-turbo" | |
nf4_config = BitsAndBytesConfig( | |
load_in_4bit=True, | |
bnb_4bit_quant_type="nf4", | |
bnb_4bit_compute_dtype=torch.bfloat16 | |
) | |
model_nf4 = SD3Transformer2DModel.from_pretrained( | |
model_id, | |
subfolder="transformer", | |
quantization_config=nf4_config, | |
torch_dtype=torch.bfloat16 | |
) | |
t5_nf4 = T5EncoderModel.from_pretrained("diffusers/t5-nf4", torch_dtype=torch.bfloat16) | |
pipeline = StableDiffusion3Pipeline.from_pretrained( | |
model_id, | |
transformer=model_nf4, | |
text_encoder_3=t5_nf4, | |
torch_dtype=torch.bfloat16 | |
) | |
pipeline.enable_model_cpu_offload() | |
def genie (Prompt, height, width, seed): | |
generator = np.random.seed(0) if seed == 0 else torch.manual_seed(seed) | |
image = pipeline(Prompt, num_inference_steps=4, height=height, width=width, guidance_scale=0.0,).images[0] | |
return image | |
gr.Interface(fn=genie, inputs=[#gr.Radio(['PhotoReal', 'Animagine XL 4',], value='PhotoReal', label='Choose Model'), | |
gr.Textbox(label='What you want the AI to generate. 77 Token Limit.'), | |
#gr.Textbox(label='What you Do Not want the AI to generate. 77 Token Limit'), | |
gr.Slider(512, 1024, 768, step=128, label='Height'), | |
gr.Slider(512, 1024, 768, step=128, label='Width'), | |
#gr.Slider(3, maximum=12, value=5, step=.25, label='Guidance Scale', info="5-7 for PhotoReal and 7-10 for Animagine"), | |
#gr.Slider(25, maximum=50, value=25, step=25, label='Number of Iterations'), | |
gr.Slider(minimum=0, step=1, maximum=9999999999999999, randomize=True, label='Seed: 0 is Random'), | |
], | |
outputs=gr.Image(label='Generated Image'), | |
title="Manju Dream Booth V2.5 - GPU", | |
description="<br><br><b/>Warning: This Demo is capable of producing NSFW content.", | |
article = "If You Enjoyed this Demo and would like to Donate, you can send any amount to any of these Wallets. <br><br>SHIB (BEP20): 0xbE8f2f3B71DFEB84E5F7E3aae1909d60658aB891 <br>PayPal: https://www.paypal.me/ManjushriBodhisattva <br>ETH: 0xbE8f2f3B71DFEB84E5F7E3aae1909d60658aB891 <br>DOGE: DL5qRkGCzB2ENBKfEhHarvKm1qas3wyHx7<br><br>Code Monkey: <a href=\"https://huggingface.co/Manjushri\">Manjushri</a>").launch(debug=True, max_threads=80) |