Spaces:
Sleeping
Sleeping
File size: 3,894 Bytes
1cc659a 103e460 bec953a b895ef0 bec953a a9e4586 bec953a 8c080f9 19f35cc 0b56559 bec953a 41e9758 b895ef0 98d236f 87b05c5 b895ef0 6645505 b895ef0 6645505 b895ef0 6645505 c4625a8 bec953a b895ef0 41e9758 c4625a8 b895ef0 bec953a 50e693d bec953a eb4f5e1 bec953a b895ef0 bec953a 87b05c5 bec953a b895ef0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 |
import gradio as gr
import torch
import numpy as np
import modin.pandas as pd
from PIL import Image
from diffusers import DiffusionPipeline, StableDiffusion3Pipeline
from huggingface_hub import hf_hub_download
device = 'cuda' if torch.cuda.is_available() else 'cpu'
torch.cuda.max_memory_allocated(device=device)
torch.cuda.empty_cache()
def genie (Model, Prompt, negative_prompt, height, width, scale, steps, seed, progress=gr.Progress(track_tqdm=True), max_sequence_length=512):
generator = np.random.seed(0) if seed == 0 else torch.manual_seed(seed)
if Model == "SD3.5":
#torch.cuda.max_memory_allocated(device=device)
torch.cuda.empty_cache()
SD3 = StableDiffusion3Pipeline.from_pretrained("stabilityai/stable-diffusion-3.5-medium", torch_dtype=torch.float16).to(device)
torch.cuda.empty_cache()
progress=gr.Progress(track_tqdm=True)
image=SD3(
prompt=Prompt,
height=height,
width=width,
negative_prompt=negative_prompt,
guidance_scale=scale,
num_images_per_prompt=1,
num_inference_steps=steps, max_sequence_length=512).images[0]
if Model == "FXL":
torch.cuda.empty_cache()
#torch.cuda.max_memory_allocated(device=device)
progress=gr.Progress(track_tqdm=True)
pipe = DiffusionPipeline.from_pretrained("circulus/canvers-fusionXL-v1", torch_dtype=torch.float32)
pipe.enable_xformers_memory_efficient_attention()
pipe = pipe.to(device)
torch.cuda.empty_cache()
#torch.cuda.max_memory_allocated(device=device)
int_image = pipe(Prompt, negative_prompt=negative_prompt, height=height, width=width, num_inference_steps=steps, guidance_scale=scale, max_sequence_length=512, output_type="latent").images
pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-refiner-1.0", use_safetensors=True, torch_dtype=torch.float16, variant="fp16") if torch.cuda.is_available() else DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-refiner-1.0")
pipe.enable_xformers_memory_efficient_attention()
pipe = pipe.to(device)
torch.cuda.empty_cache()
image = pipe(Prompt, negative_prompt=negative_prompt, image=int_image, max_sequence_length=512, denoising_start=.99).images[0]
torch.cuda.empty_cache()
return image
gr.Interface(fn=genie, inputs=[gr.Radio(["SD3.5", "FXL"], value='SD3.5', label='Choose Model'),
gr.Textbox(label='What you want the AI to generate. 77 Token Limit.'),
gr.Textbox(label='What you Do Not want the AI to generate. 77 Token Limit'),
gr.Slider(512, 1536, 1024, step=128, label='Height'),
gr.Slider(512, 1536, 1024, step=128, label='Width'),
gr.Slider(.5, maximum=15, value=7, step=.25, label='Guidance Scale'),
gr.Slider(10, maximum=50, value=25, step=5, label='Number of Prior Iterations'),
gr.Slider(minimum=0, step=1, maximum=9999999999999999, randomize=True, label='Seed: 0 is Random')],
outputs=gr.Image(label='Generated Image'),
title="Manju Dream Booth V2.5 with Stable Diffusion 3.5 & Fusion XL - GPU",
description="<br><br><b/>Warning: This Demo is capable of producing NSFW content.",
article = "If You Enjoyed this Demo and would like to Donate, you can send any amount to any of these Wallets. <br><br>SHIB (BEP20): 0xbE8f2f3B71DFEB84E5F7E3aae1909d60658aB891 <br>PayPal: https://www.paypal.me/ManjushriBodhisattva <br>ETH: 0xbE8f2f3B71DFEB84E5F7E3aae1909d60658aB891 <br>DOGE: D9QdVPtcU1EFH8jDC8jhU9uBcSTqUiA8h6<br><br>Code Monkey: <a href=\"https://huggingface.co/Manjushri\">Manjushri</a>").launch(debug=True) |