Manireddy1508 commited on
Commit
3b37434
·
verified ·
1 Parent(s): be14376

Create flux/modules/autoencoder.py

Browse files
Files changed (1) hide show
  1. uno/flux/modules/autoencoder.py +327 -0
uno/flux/modules/autoencoder.py ADDED
@@ -0,0 +1,327 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) 2025 Bytedance Ltd. and/or its affiliates. All rights reserved.
2
+ # Copyright (c) 2024 Black Forest Labs and The XLabs-AI Team. All rights reserved.
3
+
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+
16
+ from dataclasses import dataclass
17
+
18
+ import torch
19
+ from einops import rearrange
20
+ from torch import Tensor, nn
21
+
22
+
23
+ @dataclass
24
+ class AutoEncoderParams:
25
+ resolution: int
26
+ in_channels: int
27
+ ch: int
28
+ out_ch: int
29
+ ch_mult: list[int]
30
+ num_res_blocks: int
31
+ z_channels: int
32
+ scale_factor: float
33
+ shift_factor: float
34
+
35
+
36
+ def swish(x: Tensor) -> Tensor:
37
+ return x * torch.sigmoid(x)
38
+
39
+
40
+ class AttnBlock(nn.Module):
41
+ def __init__(self, in_channels: int):
42
+ super().__init__()
43
+ self.in_channels = in_channels
44
+
45
+ self.norm = nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True)
46
+
47
+ self.q = nn.Conv2d(in_channels, in_channels, kernel_size=1)
48
+ self.k = nn.Conv2d(in_channels, in_channels, kernel_size=1)
49
+ self.v = nn.Conv2d(in_channels, in_channels, kernel_size=1)
50
+ self.proj_out = nn.Conv2d(in_channels, in_channels, kernel_size=1)
51
+
52
+ def attention(self, h_: Tensor) -> Tensor:
53
+ h_ = self.norm(h_)
54
+ q = self.q(h_)
55
+ k = self.k(h_)
56
+ v = self.v(h_)
57
+
58
+ b, c, h, w = q.shape
59
+ q = rearrange(q, "b c h w -> b 1 (h w) c").contiguous()
60
+ k = rearrange(k, "b c h w -> b 1 (h w) c").contiguous()
61
+ v = rearrange(v, "b c h w -> b 1 (h w) c").contiguous()
62
+ h_ = nn.functional.scaled_dot_product_attention(q, k, v)
63
+
64
+ return rearrange(h_, "b 1 (h w) c -> b c h w", h=h, w=w, c=c, b=b)
65
+
66
+ def forward(self, x: Tensor) -> Tensor:
67
+ return x + self.proj_out(self.attention(x))
68
+
69
+
70
+ class ResnetBlock(nn.Module):
71
+ def __init__(self, in_channels: int, out_channels: int):
72
+ super().__init__()
73
+ self.in_channels = in_channels
74
+ out_channels = in_channels if out_channels is None else out_channels
75
+ self.out_channels = out_channels
76
+
77
+ self.norm1 = nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True)
78
+ self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1)
79
+ self.norm2 = nn.GroupNorm(num_groups=32, num_channels=out_channels, eps=1e-6, affine=True)
80
+ self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1)
81
+ if self.in_channels != self.out_channels:
82
+ self.nin_shortcut = nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=1, padding=0)
83
+
84
+ def forward(self, x):
85
+ h = x
86
+ h = self.norm1(h)
87
+ h = swish(h)
88
+ h = self.conv1(h)
89
+
90
+ h = self.norm2(h)
91
+ h = swish(h)
92
+ h = self.conv2(h)
93
+
94
+ if self.in_channels != self.out_channels:
95
+ x = self.nin_shortcut(x)
96
+
97
+ return x + h
98
+
99
+
100
+ class Downsample(nn.Module):
101
+ def __init__(self, in_channels: int):
102
+ super().__init__()
103
+ # no asymmetric padding in torch conv, must do it ourselves
104
+ self.conv = nn.Conv2d(in_channels, in_channels, kernel_size=3, stride=2, padding=0)
105
+
106
+ def forward(self, x: Tensor):
107
+ pad = (0, 1, 0, 1)
108
+ x = nn.functional.pad(x, pad, mode="constant", value=0)
109
+ x = self.conv(x)
110
+ return x
111
+
112
+
113
+ class Upsample(nn.Module):
114
+ def __init__(self, in_channels: int):
115
+ super().__init__()
116
+ self.conv = nn.Conv2d(in_channels, in_channels, kernel_size=3, stride=1, padding=1)
117
+
118
+ def forward(self, x: Tensor):
119
+ x = nn.functional.interpolate(x, scale_factor=2.0, mode="nearest")
120
+ x = self.conv(x)
121
+ return x
122
+
123
+
124
+ class Encoder(nn.Module):
125
+ def __init__(
126
+ self,
127
+ resolution: int,
128
+ in_channels: int,
129
+ ch: int,
130
+ ch_mult: list[int],
131
+ num_res_blocks: int,
132
+ z_channels: int,
133
+ ):
134
+ super().__init__()
135
+ self.ch = ch
136
+ self.num_resolutions = len(ch_mult)
137
+ self.num_res_blocks = num_res_blocks
138
+ self.resolution = resolution
139
+ self.in_channels = in_channels
140
+ # downsampling
141
+ self.conv_in = nn.Conv2d(in_channels, self.ch, kernel_size=3, stride=1, padding=1)
142
+
143
+ curr_res = resolution
144
+ in_ch_mult = (1,) + tuple(ch_mult)
145
+ self.in_ch_mult = in_ch_mult
146
+ self.down = nn.ModuleList()
147
+ block_in = self.ch
148
+ for i_level in range(self.num_resolutions):
149
+ block = nn.ModuleList()
150
+ attn = nn.ModuleList()
151
+ block_in = ch * in_ch_mult[i_level]
152
+ block_out = ch * ch_mult[i_level]
153
+ for _ in range(self.num_res_blocks):
154
+ block.append(ResnetBlock(in_channels=block_in, out_channels=block_out))
155
+ block_in = block_out
156
+ down = nn.Module()
157
+ down.block = block
158
+ down.attn = attn
159
+ if i_level != self.num_resolutions - 1:
160
+ down.downsample = Downsample(block_in)
161
+ curr_res = curr_res // 2
162
+ self.down.append(down)
163
+
164
+ # middle
165
+ self.mid = nn.Module()
166
+ self.mid.block_1 = ResnetBlock(in_channels=block_in, out_channels=block_in)
167
+ self.mid.attn_1 = AttnBlock(block_in)
168
+ self.mid.block_2 = ResnetBlock(in_channels=block_in, out_channels=block_in)
169
+
170
+ # end
171
+ self.norm_out = nn.GroupNorm(num_groups=32, num_channels=block_in, eps=1e-6, affine=True)
172
+ self.conv_out = nn.Conv2d(block_in, 2 * z_channels, kernel_size=3, stride=1, padding=1)
173
+
174
+ def forward(self, x: Tensor) -> Tensor:
175
+ # downsampling
176
+ hs = [self.conv_in(x)]
177
+ for i_level in range(self.num_resolutions):
178
+ for i_block in range(self.num_res_blocks):
179
+ h = self.down[i_level].block[i_block](hs[-1])
180
+ if len(self.down[i_level].attn) > 0:
181
+ h = self.down[i_level].attn[i_block](h)
182
+ hs.append(h)
183
+ if i_level != self.num_resolutions - 1:
184
+ hs.append(self.down[i_level].downsample(hs[-1]))
185
+
186
+ # middle
187
+ h = hs[-1]
188
+ h = self.mid.block_1(h)
189
+ h = self.mid.attn_1(h)
190
+ h = self.mid.block_2(h)
191
+ # end
192
+ h = self.norm_out(h)
193
+ h = swish(h)
194
+ h = self.conv_out(h)
195
+ return h
196
+
197
+
198
+ class Decoder(nn.Module):
199
+ def __init__(
200
+ self,
201
+ ch: int,
202
+ out_ch: int,
203
+ ch_mult: list[int],
204
+ num_res_blocks: int,
205
+ in_channels: int,
206
+ resolution: int,
207
+ z_channels: int,
208
+ ):
209
+ super().__init__()
210
+ self.ch = ch
211
+ self.num_resolutions = len(ch_mult)
212
+ self.num_res_blocks = num_res_blocks
213
+ self.resolution = resolution
214
+ self.in_channels = in_channels
215
+ self.ffactor = 2 ** (self.num_resolutions - 1)
216
+
217
+ # compute in_ch_mult, block_in and curr_res at lowest res
218
+ block_in = ch * ch_mult[self.num_resolutions - 1]
219
+ curr_res = resolution // 2 ** (self.num_resolutions - 1)
220
+ self.z_shape = (1, z_channels, curr_res, curr_res)
221
+
222
+ # z to block_in
223
+ self.conv_in = nn.Conv2d(z_channels, block_in, kernel_size=3, stride=1, padding=1)
224
+
225
+ # middle
226
+ self.mid = nn.Module()
227
+ self.mid.block_1 = ResnetBlock(in_channels=block_in, out_channels=block_in)
228
+ self.mid.attn_1 = AttnBlock(block_in)
229
+ self.mid.block_2 = ResnetBlock(in_channels=block_in, out_channels=block_in)
230
+
231
+ # upsampling
232
+ self.up = nn.ModuleList()
233
+ for i_level in reversed(range(self.num_resolutions)):
234
+ block = nn.ModuleList()
235
+ attn = nn.ModuleList()
236
+ block_out = ch * ch_mult[i_level]
237
+ for _ in range(self.num_res_blocks + 1):
238
+ block.append(ResnetBlock(in_channels=block_in, out_channels=block_out))
239
+ block_in = block_out
240
+ up = nn.Module()
241
+ up.block = block
242
+ up.attn = attn
243
+ if i_level != 0:
244
+ up.upsample = Upsample(block_in)
245
+ curr_res = curr_res * 2
246
+ self.up.insert(0, up) # prepend to get consistent order
247
+
248
+ # end
249
+ self.norm_out = nn.GroupNorm(num_groups=32, num_channels=block_in, eps=1e-6, affine=True)
250
+ self.conv_out = nn.Conv2d(block_in, out_ch, kernel_size=3, stride=1, padding=1)
251
+
252
+ def forward(self, z: Tensor) -> Tensor:
253
+ # z to block_in
254
+ h = self.conv_in(z)
255
+
256
+ # middle
257
+ h = self.mid.block_1(h)
258
+ h = self.mid.attn_1(h)
259
+ h = self.mid.block_2(h)
260
+
261
+ # upsampling
262
+ for i_level in reversed(range(self.num_resolutions)):
263
+ for i_block in range(self.num_res_blocks + 1):
264
+ h = self.up[i_level].block[i_block](h)
265
+ if len(self.up[i_level].attn) > 0:
266
+ h = self.up[i_level].attn[i_block](h)
267
+ if i_level != 0:
268
+ h = self.up[i_level].upsample(h)
269
+
270
+ # end
271
+ h = self.norm_out(h)
272
+ h = swish(h)
273
+ h = self.conv_out(h)
274
+ return h
275
+
276
+
277
+ class DiagonalGaussian(nn.Module):
278
+ def __init__(self, sample: bool = True, chunk_dim: int = 1):
279
+ super().__init__()
280
+ self.sample = sample
281
+ self.chunk_dim = chunk_dim
282
+
283
+ def forward(self, z: Tensor) -> Tensor:
284
+ mean, logvar = torch.chunk(z, 2, dim=self.chunk_dim)
285
+ if self.sample:
286
+ std = torch.exp(0.5 * logvar)
287
+ return mean + std * torch.randn_like(mean)
288
+ else:
289
+ return mean
290
+
291
+
292
+ class AutoEncoder(nn.Module):
293
+ def __init__(self, params: AutoEncoderParams):
294
+ super().__init__()
295
+ self.encoder = Encoder(
296
+ resolution=params.resolution,
297
+ in_channels=params.in_channels,
298
+ ch=params.ch,
299
+ ch_mult=params.ch_mult,
300
+ num_res_blocks=params.num_res_blocks,
301
+ z_channels=params.z_channels,
302
+ )
303
+ self.decoder = Decoder(
304
+ resolution=params.resolution,
305
+ in_channels=params.in_channels,
306
+ ch=params.ch,
307
+ out_ch=params.out_ch,
308
+ ch_mult=params.ch_mult,
309
+ num_res_blocks=params.num_res_blocks,
310
+ z_channels=params.z_channels,
311
+ )
312
+ self.reg = DiagonalGaussian()
313
+
314
+ self.scale_factor = params.scale_factor
315
+ self.shift_factor = params.shift_factor
316
+
317
+ def encode(self, x: Tensor) -> Tensor:
318
+ z = self.reg(self.encoder(x))
319
+ z = self.scale_factor * (z - self.shift_factor)
320
+ return z
321
+
322
+ def decode(self, z: Tensor) -> Tensor:
323
+ z = z / self.scale_factor + self.shift_factor
324
+ return self.decoder(z)
325
+
326
+ def forward(self, x: Tensor) -> Tensor:
327
+ return self.decode(self.encode(x))